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ABSTRACT
In many classification problems labels are relatively scarce.
One context in which this occurs is where we have labels for
groups of instances but not for the instances themselves, as
in multi-instance learning. Past work on this problem has
typically focused on learning classifiers to make predictions
at the group level. In this paper we focus on the problem of
learning classifiers to make predictions at the instance level.
To achieve this we propose a new objective function that en-
courages smoothness of inferred instance-level labels based
on instance-level similarity, while at the same time respect-
ing group-level label constraints. We apply this approach to
the problem of predicting labels for sentences given labels
for reviews, using a convolutional neural network to infer
sentence similarity. The approach is evaluated using three
large review data sets from IMDB, Yelp, and Amazon, and
we demonstrate the proposed approach is both accurate and
scalable compared to various alternatives.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; I.2.7 [Artificial
Intelligence]: Text analysis

Keywords
Multi-instance learning, unsupervised learning, deep learn-
ing, sentiment analysis

1. INTRODUCTION
There are a variety of classification problems where class

labels are not available at the instance level but are available
for groups of instances. For example, text documents such
as product and movie reviews may have positive or nega-
tive labels at the document (group) level rather than at the
sentence (instance) level. Similarly, images may be labeled
in terms of whether an object is present or not within the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
KDD’15, August 10-13, 2015, Sydney, NSW, Australia.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3664-2/15/08 ...$15.00.
DOI: http://dx.doi.org/10.1145/2783258.2783380 .

image, but without any labels for localized regions within
the image.

This “group-level” labeling is often expedient when man-
ually labeling data since it is relatively easy for a human
to quickly provide labels at the group level, e.g., indicating
whether a review is positive or negative or whether an im-
age contains a cat or not. In contrast generating labels at
the instance-level (e.g. for sentences within reviews) is much
more time consuming.

There are many applications, however, where we would
like to be able to go beyond the group level and make pre-
dictions about class labels at the instance level. For example,
in generating summaries of positive and negative reviews for
human interpretation it would be useful identify not only
which reviews (groups) are most positive and negative, but
also which sentences within reviews are positive or negative.
In turn this information could be used for summarization
purposes indicating the most positive or negative sentences.

As an example, in cases where reviews are generally pos-
itive, detecting negative comments is a key step toward im-
proving customer service. In contexts involving individual
information and privacy, such as healthcare and census data,
quantifying how much information can be predicted at the
individual level given group information is an important is-
sue (e.g., see [13, 33]).

In this paper we propose a new approach to the problem of
using group-level labels to learn instance-level classification
models. The resulting classifiers can be used to transfer
information from the group-level to the instance level when
group labels are available, in addition to making predictions
about new instances and groups.

Our approach is based on an objective function that takes
advantage of instance similarity in order to impose smooth-
ness on instance labels, while at the same time respecting
group-level label constraints. We demonstrate how this idea
can be used to infer ratings of sentences (instances) from
ratings of reviews (groups of sentences). A key step in
this approach is the use of embedding techniques, to obtain
vector-based representations for sentences. Here we use con-
volutional neural networks for the embeddings. Using these
vector representations, we formulate a regularized manifold
learning objective function to learn the labels of each sen-
tence. We transfer the labels from entire reviews to indi-
vidual sentences and in doing so, eliminate the high cost of
gathering labels at the sentence level. Although the focus of
this paper is on text documents, the ideas are applicable to
a considerably broader range of problems.



Prior work related to this problem has focused on more
constrained scenarios. For example, in multi-instance learn-
ing (MIL), where groups of instances are referred to as“bags,”
a common assumption is that all negatively-labeled bags
contain only negative instances and all positively-labeled
bags contain at least 1 positive instance [8]. This type of
assumption can be somewhat restrictive when dealing with
real-world data sets such as reviews, which in general can
contain both positive and negative sentences. In addition,
much of the earlier work in MIL is focused on learning to
predict labels at the group (bag) level rather than at the
instance level. More recent approaches e.g., [34] have been
proposed that relax the OR assumption and that focus on
predicting instance-level labels. However, these methods of-
ten do not scale well computationally in the number of in-
stances [30]. Relative to this earlier work, the primary con-
tributions of this paper are:

• A novel and flexible objective function that uses in-
stance similarity and group label constraints to learn
instance-level classification models, with a scalable learn-
ing algorithm using stochastic gradient methods;

• The application and evaluation of this approach on
the problem of sentence-level sentiment prediction for
multiple large real-world review data sets, using neural
network embeddings to obtain vector-valued represen-
tations for sentences.

In Section 2 below we review related work. Section 3 in-
troduces our new objective function, with a description of
how the instance-level similarity and group-level label con-
straints are combined, as well as an outline of how the ob-
jective can be minimized using stochastic gradient optimiza-
tion. In Section 4 we describe the use of convolutional neu-
ral networks to learn vector representations for sentences.
Section 5 presents our experimental results, on three large
review data sets: movie reviews from IMDB, restaurant re-
views from Yelp, and product reviews from Amazon. We
show that our proposed method performs well across these
data sets. We also compare our method against more clas-
sical approaches in MIL. In Section 6 we discuss scalability
aspects of our approach including the relatively fast conver-
gence of stochastic gradient approach. Section 7 contains
conclusions.

2. RELATED WORK
MIL focuses on classification problems where labels are as-

sociated with sets of instances, often referred to as bags or
groups, instead of individual instances1. The labels associ-
ated with the groups are assumed to be some function of the
unobserved instance-level labels. MIL was first explored as
a variant of a standard supervised learning problem in which
training examples are ambiguous in the sense that each ob-
ject has multiple feature vectors but only one of those may
be responsible for its label [8]. The MIL framework has
since been applied to a large variety of applications, such
as content-based image retrieval and classification [21], text
categorization [1], object recognition [14] and privacy [13].

The traditional definition of MIL, however, makes a strong
assumption that the aggregation function over instance la-
bels is an OR function, i.e., that positive bags contain at

1The literature on this topic is vast and there is often dis-
agreement in terminology—for extensive surveys see [5, 9]

least 1 positive instance and that negative bags contain only
negative instances. Moreover, the primary focus is to infer
labels at the group level rather than at the instance level.

A number of approaches relax the assumption of an OR
function and propose other forms of aggregation. Weidmann
et al. [31] consider a generalization where the presence of
a combination of instance types determines the label of the
group. Xu and Frank [32] assume that all instances con-
tribute equally and independently to a group’s class label.
Zhou et al. [35] build a model that solves MIL through semi-
supervised learning techniques by considering a negative la-
bel for every instance in a negative group. These types of
solutions are typically tailored to handle specific assump-
tions about the whole-part relationship between groups and
instances. Our proposed approach is more flexible as it al-
lows for more general parametrizations of such relationships.

A more recent line of work addresses the problem of pre-
dicting labels for instances, but still assuming the OR func-
tion for label aggregation. For example Kandemir et al., [12]
model the class distribution through a non-parametric mix-
ture model and infer class labels that satisfy the constraints
of the bags. Liu et al. [19] search for positive instances
(called key instances) within positively-labeled groups using
nearest-neighbor graphs among instances and voting schemes.

Support-vector machines (SVMs) have also been widely
used for MIL problems. For example, Gartner et al [10] pro-
posed kernels that work for groups of instances and then
trained a traditional SVM on these. Andrews et al [1] pro-
pose an extension called mi-SVM, where they maximize a
soft-margin criterion jointly over possible label assignments
as well as hyperplanes. Other approaches include trans-
ductive SVMs [4] and approaches for sparse multi-instance
learning [3], as well as methods for identifying key instances
and connect them through labels, which is very useful for
discovering regions of interest in images [17, 18]. A draw-
back of the SVM approach in general is the computational
complexity, often necessitating approximations and limiting
applicability in practice to relatively small data sets.

A different strand of work in MIL assumes that the ex-
pected proportion of instances per class is known for each
group. Given this information, the goal is to predict the
label of each instance within the bags [15, 27, 33]. Patrini
et. al [25] developed theoretical results that show that a
mean operator on the group labels can provide a minimally
sufficient statistic for many proper cost functions defined on
labels of instances. They demonstrate how this approach
can be used to learn accurate instance-level classifiers on a
variety of well-known data sets.

The method we propose in this paper can be viewed as
complementary to the prior work described above. In partic-
ular we focus on instance level predictions, allow for general
forms of aggregation functions, and do not require knowl-
edge of label proportions. Our contribution is based on
a new cost function that can work with general aggrega-
tion functions and a variety of instance classifiers and that
can provide predictions for both group and instance level la-
bels. Our results are, to the best of our knowledge, the first
large-scale application of MIL techniques to text-based re-
view data, and in particular to the problem of automatically
identifying positive and negative sentences within reviews
using an MIL approach.



3. MULTI INSTANCE LEARNING LOSS
FUNCTION

3.1 Problem Formulation
Consider a set of training instances, X = {xi}, i = 1 . . . N ,

where unlike the standard supervised setting we are not
given labels for each training instance directly. Instead we
are given labels for groups of instances:

D = {(Gk, `k)}k=1,...,K

where Gk ⊆ X is a multi-set of instances from X and `k is a
label assigned to the group Gk. We assume `k is an unknown
function of the (unobserved) labels of the elements of Gk. In
this paper we focus on binary labels, `k ∈ {0, 1}, but the
approach is more broadly applicable to non-binary cases.
We also assume we have a function K (xi,xj) ∈ [0, 1] which
measures the similarity between pairs of instances xi and
xj . This can be viewed as a kernel function—in Section 4 we
discuss in detail how we use neural embeddings to construct
K for sentences. In addition ŷi = ŷθ(xi) denotes a real-
valued score, representing the likelihood that an instance
xi belongs to a class label, as predicted by classifier y with
parameters θ.

Our goals here are twofold. Firstly, we would like to infer
labels for each example by propagating information from
the group labeling to the instances, essentially inverting the
unknown label aggregation function on the training data.
In order to achieve this we take advantage of the similarity
measure K to compute a label assignment that is compatible
with the group structure of the data, and simultaneously
learn to assign the same label to similar instances.

Our second goal is more ambitious. In addition to assign-
ing labels to the training instances we also aim to produce a
classifier that predicts a label for instances not found in the
training set. These labels can then be aggregated and used
to infer the labels of new groups.

3.2 The General Cost Function
We can achieve both of these goals by constructing a gen-

eral cost function which we minimize as a function of the
classifier parameters θ:

J(θ) =
1

N2

N∑
i=1

N∑
j=1

K (xi,xj)∆1

(
ŷi, ŷj

)
+
λ

K

K∑
k=1

∆2

(
ˆ̀
k, `k

)
where:

• K (xi,xj) ∈ [0, 1] represents a similarity measure be-
tween instances xi,xj ;

• ∆1

(
ŷθ(xi), ŷθ(xj)

)
is a non-negative penalty on the dif-

ference between predictions for instances i and j;

• ∆2

(
ˆ̀
k, `k

)
is a non-negative penalty on the difference

between the prediction and the true label for group k.

• ˆ̀
k = A (Gk,θ) ∈ [0, 1] is a real-valued scalar repre-

senting the output of an aggregation function for all
instance-level label predictions in a group Gk. The
exact specification of this whole-part relationship will
typically depend on the particular application.

• λ > 0 balances the contributions between the 2 sums,
and can be selected via cross-validation on a validation
set.

For example ∆1 and ∆2 above could be specified as square
error or log-loss. N and K are the total number of instances
and groups, respectively.

Both terms in the objective function above can be seen
as different forms of label propagation. The first term is
a standard manifold-propagation term, which spreads la-
bel information over the data manifold in feature-space. A
similar term often appears in semi-supervised learning prob-
lems, where the goal is to make predictions using a partially-
labeled data set. In such a setting a label propagation term
alone is sufficient; however, since we have labels only for
groups of instances we require additional structure in our
cost function.

The second term parametrizes the whole-part relationship
between the groups and the instances they contain. This has
the effect of propagating information from the group labels
to the instances. In addition, this term acts as a regular-
izer and helps avoid the trivial cases where every instance
has the same label, regardless of the group it belongs to.
In semi-supervised learning, we do not need such a regu-
larizer, as correct labels of instances will avoid the trivial
solution—here, however, without fine grained supervision,
the regularizer term is required to deal with this issue.

Neither of the two individual terms in the cost function
would work well by itself. This situation is not unlike what
we find when we carry out kernel regression with L1 regu-
larization, where the likelihood term often leads to patho-
logical problems and the regularizer simply has the effect of
shrinking the parameters to a common value (typically zero).
However, when we combine the two competing terms, we are
able to obtain useful results. The parameter λ trades off the
contributions of the two terms.

Optimizing this objective will produce a classifier ŷθ(x)
which can assign labels to previously seen or to unseen in-
stances, despite having been trained using only group labels.
This classifier simultaneously achieves both of our stated
goals: we can apply the classifier to instances of X in order
to obtain labels for the training instances, and we can also
use it to make predictions for unseen test instances. We can
also predict labels at the group level, by aggregating all our
predictions at the instance level within a group.

This formulation relies on having a good similarity mea-
sure K (xi,xj). It would be simple to take the average score
of each instance across groups, and minimize the second
term of the objective. However, the presence of the first
term pushes similar items across different groups to have
similar labels and allows for inter-group knowledge transfer.

3.3 A Specific Cost Function
In this paper, where our ultimate goal is to apply this

method to reviews and sentences within reviews, we chose
relatively simple measures for each of the components in the
cost function and that make sense for this application.

For the classifier we used a simple logistic regression model
where:

ŷi = ŷθ(xi) = σ(θ>xi) =
1

1 + e−θ>xi
,

and we chose the two penalty functions, ∆1,∆2, each to be
the square loss, i.e.,

∆1(ŷi, ŷj) = (ŷi − ŷj)2 (1)

Other weighted loss functions could be used for the first
term. The role of this term is to ensure that similar individ-



ual features xi are assigned similar labels y, smoothed by
the similarity function K . For this similarity function, we
used the kernel:

K (xi,xj) = exp(−‖xi − xj‖22), ∈ [0, 1] (2)

which is a transformation of the Euclidean norm and a spe-
cial case of the radial basis function (RBF) kernel. Since the
choice of a particular kernel can in general make a difference
in machine learning problems, we also evaluated differently
parametrized RBF kernels as well as cosine similarity for the
vectors in our experiments. We found that the accuracy of
the overall method was not sensitive to the particular choice
and parametrization of the kernel.

To parametrize the whole-part relationship we chose a
simple function that assumens that the label of a group is
obtained by averaging the labels of its elements. Hence, for
each group g :

ˆ̀
k = A(Gk,θ) =

1

|Gk|
∑
i∈Gk

ŷθ(xi)

This averaging function makes more sense for modeling re-
views and sentences, compared to (say) the OR function,
since we expect that the label of a review will in general
tend to correlate with the average sentence-level sentiment
across its constituent sentences.

Thus, in this paper, the specific cost function we optimize
is:

J(θ) =
1

N2

N∑
i=1

N∑
j=1

e(−‖xi−xj‖22)
(
σ(θ>xi)− σ(θ>xj)

)2

+
λ

K

K∑
k=1

 1

|Gk|

∑
i∈Gk

σ(θ>xi)

− `k
2

(3)

More complex classifiers, alternative whole-part relation-
ships, and other penalty functions could be explored, but
are beyond the scope of this paper. Instead, we have opted
for simplicity in our choices above and will show later in
our experimental results that these choices lead to accurate
models.

3.4 Training Methodology
Given a specification of a cost function, one can train our

classifier as follows:

1. Create vector representations xi of the instances (dis-
cussed in the next section);

2. Optimize the cost function through stochastic gradient
descent, to learn the parameters θ;

3. Predict labels for any instance x via the classifier ŷθ(x),
and make predictions for groups via ŷg = Ag(ŷθ(x))

To optimize our cost function we use mini-batch stochas-
tic gradient with momentum. For each mini-batch we do k
iterations of optimization. We automatically select the algo-
rithm parameters (learning rate, mini-batch size, k, λ) via
linear grid search on the training data, using the group level
accuracy of our training data as our performance measure.
We found in general in our experiments that the results were
relatively insensitive to the exact settings of the algorithm
parameters.
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Figure 1: Model from Denil et al. [7]. The green squares indi-
cate embedding vectors for sentences (atop the tiled sentence
models) and for documents (atop the document model).

4. EMBEDDING NON-VECTOR INSTANCES
WITH DEEP LEARNING

In practice data instances (such as sentences) are often
not represented in vector form x, and finding a good vector
representation is not a a trivial problem. In this section we
discuss generating feature vector representations using deep
learning and text embeddings.

In particular we take advantage of recent advances in
learning distributed representations for text. Early work
on developing neural network representation for language
dates back several decades [2, 11]. More recent work has
shown that the semantic relationships of words can be effec-
tively captured using the geometry of a continuous embed-
ding space [6, 24, 23, 26].

Neural network models have also been used to build rep-
resentations for larger blocks of text. A notable example of
this is the paragraph vector [16] which extends the earlier
work of Mikolov et al. [24] to simultaneously build represen-
tations for words and paragraphs. Another recent develop-
ment in this direction is the work of Denil et al. [7] which uses
a convolutional neural network to build representations for
words, sentences and documents simultaneously. We adopt
this convolutional neural network here for our experiments
because it provides a useful method for obtaining represen-
tations for sentences.

The model of Denil et al. [7] is a multi-level convolutional
network, which represents a document using a two stage
process. The first stage represents each sentence in the doc-
ument in an embedding space and the second stage then
transforms the sentence embeddings into a representation
for the full document. Both stages of the model are jointly
trained to predict labels at the document level. The struc-
ture of this model is shown in Figure 1.

This model is ideally suited to our setting because it pro-
duces meaningful sentence embeddings as an intermediate
representation without requiring sentence-level labels. Since
we have document labels (for reviews) in our training data
we can train the full model in a supervised way, and aft-
terwards extract the intermediate sentence level representa-
tions to provide vector representations x for the cost func-
tion described in Section 3. We obtain these vector em-
beddings x with a simple forward pass through the trained
convolutional network. Details of the network architecture
and training are discussed in the next section.



Query Sentence Most Similar Sentences Least Similar Sentences
[ Product works perfectly with
jawbone 2. ]

[ Product works perfectly with my Blackberry
8830. ] [ It performs exactly as described. ] [ It
works perfect! ] [ It works perfectly. ]

[ horrible horrible phone. ] [ Poor fit, poor re-
ception, then it broke. ] [ Poor design and would
not recommend don’t waste your money ]

[ I seriously do not recommend
these to anyone. ]

[ The hole don’t line up. ] [ Product didn’t
resemble picture shown. ] [ I won’t buy another.
] [ I don’t recomend wasting your money on this.]

[ Excellent Excellent Excellent wireless Blue-
tooth. ] [ Perfect custom shape fits my SLVR
L7 perfectly with no problems. ] [ It fits per-
fectly, works perfectly and I’m thrilled! ]

[ Completely Worthless. ] [ terrible case. ] [ Very poor product. ] [ THE
WORST. ] [ Dont waste your money. ] [ Worst
Phone Ever. ]

[ Excellent price, excellent battery, and ex-
tremely fast delivery. ] [ Excellent & timely
service.. ] [ Timely service, excellent price (can
you beat it? ]

[ They are more comfortable. ] [ People always say ”Cool!” ] [ Pros:Pairing was
easy. ] [ Shipping was super fast. ] [ worked as
described. ]

[ Horrible horrible horrible.] [ Poor quality, poor
construction, poor fit, almost impossible to hear
out of it. ] [ worst bluetooth ever full of static
and very poor unless your sitting in a quiet room
]

Table 1: Examples of most similar and least similar sentences, obtained by computing the similarity measure of Equation 2,
applied to the sentence embeddings from the convolutional neural network of Figure 1

If the distributed representations are accurate then we
should expect nearby points in embedding space to corre-
spond to semantically similar sentences, making the similar-
ity measures based on the Euclidean norm an appropriate
measure of closeness. Table 1 shows some illustrative sim-
ilarities between a query sentence and its most and least
similar sentences in embedding space, produced by training
a convNet as in Figure 1. The sentences are examples from
Amazon reviews on cell phones.

5. EXPERIMENTS

5.1 Datasets
We performed our experiments on three real world datasets,

and one artificially generated dataset.
Amazon: contains reviews and scores for products sold

on amazon.com in the cell phones and accessories category,
and is part of the dataset collected by McAuley and Leskovec
[22]. Scores are on an integer scale from 1 to 5. We con-
sidered reviews with a score of 4 and 5 to be positive, and
scores of 1 and 2 to be negative. We randomly partitioned
the data into two halves of 50%, one for training and one
for testing, with 35,000 documents in each set.

IMDb: refers to the IMDb movie review sentiment dataset
originally introduced by Maas et al. [20] as a benchmark for
sentiment analysis. This dataset contains a total of 100,000
movie reviews posted on imdb.com. There are 50,000 un-
labeled reviews and the remaining 50,000 are divided into
a set of 25,000 reviews for training and 25,000 reviews for
testing. Each of the labeled reviews has a binary sentiment
label, either positive or negative. In our experiments, we
train only on the labelled part of the training set.

Yelp: refers to the dataset from the Yelp dataset chal-
lenge2 from which we extracted the restaurant reviews. Scores
are on an integer scale from 1 to 5. We again considered re-
views with scores 4 and 5 to be positive, and 1 and 2 to
be negative. We randomly generated a 50-50 training and
testing split, which led to approximately 300,000 documents
for each set.

Sentences: for each of the datasets above, we extracted
and manually labeled 1000 sentences from the test set, with

2http://www.yelp.com/dataset_challenge

50% positive sentiment and 50% negative sentiment. These
sentences are only used to evaluate our instance-level classi-
fier for each dataset3. They are not used for model training,
to maintain consistency with our overall goal of learning at
a group level and predicting at the instance level.

Newsdata: refers to a multi-instance variant of the well-
known 20 newsgroups data set, where 20 different multi-
instance learning problems are created by artificially creat-
ing groups of documents and aggregating labels to the group
level. This data has been used frequently as a testbed in
prior work on multi-instance learning [1, 12, 34]. For a fair
comparison we used the feature vectors and groups used in
prior work by Zhou et. al [34] among others, and which are
available online4.

5.2 Preprocessing
For all of our datasets (except the newsgroup data set,

which is already in feature form) we use Beautiful Soup5

to preprocess each review by removing the HTML markup,
breaking the review into sentences, and then breaking each
sentence into words. We also map numbers to a generic
NUMBER token and any symbol that is not in .?! to SYMBOL.
We replace all words that appear less than 5 times in the
training set with UNKNOWN.

For the IMDb dataset we use the same model parametriza-
tion provided by Denil et al. [7] for this dataset, which yields
a set of sentence embeddings, xi ∈ R24.

For the Amazon and Yelp datasets, because we had more
data (compared to the IMDb data) we were able to in-
crease the size of the convolutional network with a similar
general neural architecture to that in [7]. We started with
20-dimensional word embeddings which are convolved with
10 feature maps of width 15, followed by a 7-max pooling
layer and a tanh nonlinearity. The weights of this model are
tied across sentences in a document. The document-level
model convolves its input with a bank of 30 feature maps of
width 9, followed by 5-max pooling and a tanh nonlinearity,
which results in sentence embeddings of xi ∈ R150. We used

3http://archive.ics.uci.edu/ml/datasets/Sentiment+
Labelled+Sentences
4http://lamda.nju.edu.cn/Data.ashx.
5http://www.crummy.com/software/BeautifulSoup/

http://www.yelp.com/dataset_challenge
http://archive.ics.uci.edu/ml/datasets/Sentiment+Labelled+Sentences
http://archive.ics.uci.edu/ml/datasets/Sentiment+Labelled+Sentences
http://lamda.nju.edu.cn/Data.ashx
http://www.crummy.com/software/BeautifulSoup/
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Figure 2: ROC plots for instance level classification, for each of the baselines and our method for the three datasets

dropout values of 0.2 after the word level and 0.5 after the
sentence level, and optimized the network using AdaGrad.

Training these networks also results in word and document
embeddings which we did not use in this work.

5.3 From Review Sentiment to Sentence Sen-
timent

We use our manually labeled datasets of sentences, from
the IMDb, Amazon, and Yelp data sets, in order to eval-
uate our performance on sentence-level sentiment classifica-
tion. We refer to our method as Group-Instance Cost Func-
tion (GICF). For reference we compare the accuracy of our
approach with a simple baseline method. For the baseline we
train an L2-regularized logistic regression classifier on a bag
of words (BOW) representation at the document level, and
then apply this document-level classifier to BOW represen-
tations of BOW sentences. Although we would not necessar-
ily expect this approach to perform well, this is the simplest
and most direct way to go from document-level supervision
to sentence-level testing. Each document and sentence is
represented as a vector of word counts. We optimize the
logistic regression model using batch gradient descent and
use a validation set of 10% of the training data to learn the
relative weight for the L2 regularization term in the cost
function.

As a second baseline we use the same logistic regression
setup, but use as features the embedding vectors which are
provided by the ConvNet, where we average all the sentence
vectors to produce the vector of a document. In this way
we can evaluate the relative contribution of the embedding
method on its own.

Figure 2 and Table 2 shows ROC plots and test set accura-
cies (respectively) for each dataset, for our method (GICF)
and the two baselines. The results overall show that our
proposed approach attains relatively high levels of accuracy
results across all 3 datasets. Using the embeddings with lo-
gistic regression yields the poorest results. One reason could
be that averaging the embeddings of sentences (to create
the representation of a document) although intuitive is sub-
optimal. Logistic regression with a bag-of-words representa-
tion is more accurate, but not as accurate as our approach.
This is likely to due to the fact that there is less signal, as
the bag-of-word vectors are very sparse at a sentence level,
which is not an issue for our approach.

To further evaluate the quality of our sentence predictions,
we compared the performance of our approach with the Sen-
timent Analysis tool described in Socher et al. [29], on the

Amazon IMDb Yelp

Logistic w/ BOW 79.0% 76.2% 75.1%
Logistic w/ Embeddings 54.3% 57.9% 66.5%
GICF w/Embeddings 88.2% 86.0% 86.3%

Table 2: Accuracy Results on the instance level classification
i.e., sentences between the baselines and our method (GICF)

IMDb movie data. This tool is pre-trained on movie data
and available online through a web interface6. We use this
interface to obtain predicted labels for our IMDb sentence
test data. It is worth noting that this method is trained with
supervision at the phrase-level, whereas we only require su-
pervision at the review level. It is expensive to obtain labels
at the phrase-level, but there exist millions, perhaps billions,
of labeled reviews online.

Their method generates the probability of a sentence be-
longing to the following five classes: [Very Negative, Neg-

ative, Neutral, Positive, Very Positive] and chooses
the class with the highest probability as the predicted class.
To convert this output to a binary decision, we count both
Positive and Very Positive labels as positive, and do the
same for negative labels. When we run our 1000 test sen-
tences from IMDb through the Socher et al. sentiment
analysis tool, it predicts Neutral for 238 of these sentences.

To compare our approach with the Socher et al. output,
we evaluate two different ways of treating Neutral predic-
tions. In the first approach, we follow the strategy in the
Socher et al. paper [29] which rejects these sentences and
calculates the accuracy of the method on the remaining 762
sentences, using an effective rejection rate of 23.8%. To com-
pare our method in the same manner, our algorithm rejects
the 238 sentences for which its estimated probabilities are
closest to 0.5 (its best estimate of which sentences are neu-
tral), within the range [0.5 − b, 0.5 + b], where b = 0.048.
In the second approach, neither algorithm rejects any sen-
tences (0% reject rate), and accuracy is calculated on all
1000 sentences. To generate a prediction for the Socher et
al. method for the 238 sentences where it predicts Neutral

with the highest probability, we select the class that it pre-
dicts with the 2nd highest probability.

At a rejection rate of 23.8% our approach is significantly
more accurate than the Socher et al. method, achieving an

6http://nlp.stanford.edu/sentiment/, accessed on June
20th, 2014

http://nlp.stanford.edu/sentiment/
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Figure 3: Accuracy of sentence classification, for various
levels of rejection rate (neutral sentences) in IMDb dataset.

accuracy of 92.6% compared to 84.7%. At a rejection rate
of 0% our approach is slightly more accurate, achieving an
accuracy of 85.7% compared to 85.5%. Figure 3 further il-
lustrates the accuracy-rejection tradeoff of our approach re-
sulting from increasing the boundary parameter b. The two
red dots indicate the precision from the two reject options
for the Socher et al. method, of 0% and 23.8%, as described
above. As we increase our boundary b, we see the rejec-
tion rate increasing (as the algorithm ignores more bound-
ary cases) accompanied by a general increase in accuracy.
These results suggest that while our method requires much
less supervision, it is able to obtain comparable or better
sentiment predictions for sentences than a state-of-the-art
supervised learning approach.

5.4 Group Level Prediction
As we have seen above, the proposed method works well

in transferring information from the group level to the in-
stance level for predicting review sentiment. As a sanity
check, we also evaluate the performance of our model as a
group (review) classifier. To accomplish this, we utilize the
aggregation function on the predicted sentence scores ŷ in
each review to classify the test set reviews. Since labels ex-
ist at the group level for all of our datasets we can directly
measure the accuracies of our classifiers.

We compare the results of our method with the same base-
line classifiers described earlier, namely the BOW or embed-
ding representations with an L2-regularized logistic regres-
sion classifier.

For the BOW baseline, we generate predictions for test
documents in two ways. In the first we consider the same
BOW and embedding representation of each test document
and classify it directly. In the second approach we aggregate
the sentence scores of each document, in the same manner
as we use in our method, i.e., we consider each sentence to
be a document, score it, and then average all the scores for
sentences in each document before thresholding at 0.5.

Table 3 reports the classification accuracy and the area
under the curve (AUC) for all methods. As previously,
the logistic regression on the embeddings underperforms all
other methods. The logistic regression that attempts to go
through the sentences to reach the group-level prediction
performs significantly worse than the simple logistic regres-

sion. This is expected as the signal in each sentence may
not be enough to correctly classify it, when using logistic re-
gression. Our approach provides better accuracy and AUC
results in two out the three datasets, despite going through
the sentences to achieve group classification. This provides
evidence that the method has been successful in transferring
information from the group to the instance level, in that it
has been able to transfer the review labels to the sentence
level in the training data, and then back again from sen-
tences to reviews in the test data.

5.5 Comparison with other MIL Algorithms
In our final experiment we use the Newsdata to evalu-

ate the efficacy of our cost function, without the use of the
information from the embeddings. We use the same feature
vectors and groupings as those used in [34], which are avail-
able online. These vectors represent the top tf−idf terms in
the corpus and are very sparse. Groups were generated un-
der a typical MIL assumption, namely that negative groups
contain only negative instances, and positive groups may
contain relatively few positive instances. Specifically, the
positive groups were created in a way that p = 3% of the
instances are positive and the other 97% are negative [34].
To account for this imbalance we changed our cost function
to incorporate this information, by penalizing false positives
by 1/p more than false negatives. Hence for a group Gk, the
second part of the equation becomes

∆2

(
ˆ̀
k, `k

)
=
(
A(Gk,θ)− 1

p
`g
)2

(and the rest of the cost function remains the same as be-
fore). Table 4 compares the results for our algorithm with a
variety of other well-known MIL algorithms, using the AUC-
PR score and results reported in [12]. The first 5 algorithms
in the table perform relatively poorly since they are designed
for predicting group-level labels rather than instance level
labels, reinforcing the point that group-level prediction al-
gorithms are not being optimized for making instance-level
predictions. The next 3 algorithms, VF, VFr, and DPMIL,
are all designed for instance-level predictions in an MIL con-
text, and perform better than the other 5 more traditional
MIL algorithms. Despite the fact that we are using a rel-
atively simple feature space (compared to the embedding
features), our approach nonetheless performs significantly
better than almost all of these approaches (and just slightly
better than the best alternative method DPMIL [12], which
is the only method which considers the imbalance of positive
instances in groups when solving the problem).

5.6 Illustrative Applications
This section discusses some illustrative applications that

are possible given the ability to attribute the group score to
its instances. In our first example, Figure 4 illustrates the
predicted sentiment for the sentences in a review7 from the
IMDb test set. Sentences highligthed in green correspond
to sentences labeled as positive by our model while sentences
in red font correspond to those labeled negative. This is a
particularly tricky example, as it contains both positive and
negative sentences. Our model is able to identify correctly
both types. Moreover, most of the words in the review are
negative, hence the naive strategy of a simple count of words

7http://www.imdb.com/title/tt0974014/reviews

http://www.imdb.com/title/tt0974014/reviews


Accuracy AUC
Amazon IMDb Yelp Amazon IMDb Yelp

Logistic w/ BOW on Documents 85.8% 86.20% 91.25% 88.08% 88.32 94.41
Logistic w/ BOW on Sentences 88.3% 81.81% 78.16% 87.19% 82.67 67.87
Logistic w/ Embeddings on Documents 67.82% 58.23% 81.00% 61.24% 60.77 82.59
GICF w/ Embeddings on Sentences 92.8% 88.56% 88.73 % 91.73% 88.36% 92.36%

Table 3: Accuracy and Area-Under-the-Curve (AUC) scores for predicting labels at the group (document) level for the
baselines and our proposed method (GICF). Training is always done at the group level. Testing on sentences corresponds to
scoring each sentence separately and aggregating the results. BOW or embeddings corresponds to the features used.

MIL Algorithm Average AUC-PR

MISVM 0.26
miSVM [1] 0.45
GPMIL 0.40
I-KISVM 0.43
B-KISVM 0.47
VF 0.59
VFr [19] 0.67
DPMIL [12] 0.70
GICF 0.71

Table 4: Scores for Area Under the Precision-Recall Curve,
for a variety of MIL algorithms, averaging over all the
datasets in the Newsdata corpus. Scores for each algo-
rithm were obtained from [12], apart from the score for our
algorithm.

or sentences would misclassify this, since the reviewer gave
a rating of 8/10. Our approach on the other hand enables
us to extract sentences that best reflect the sentiment of the
entire review, and score them at the same time. Averaging
the predicted sentence score, correctly classifies this as a
positive review.

Figure 5 shows a review from the Yelp dataset. Despite
the short length of the review, our classifier is able to appro-
priately classify each sentence. Scoring multiple sentences
separately, in reviews of a specific restaurant for example,
would allow users to perform feature queries. In this way,
they would get a positive score when the query was about
espresso, but a negative score for service or employees. Such
detailed information cannot be obtained at the review level.

Similarly, Figure 6 is a review that describes a mixed ex-
perience of a customer. Once again apart from classifying
the whole review, we get an appropriate sentiment for each
sentence, despite the fact that the sentiment of the review
is very mixed.

Finally, in Figure 7 we illustrate how this is also successful
in larger, more intertwined, and complicated reviews.

6. SCALABILITY
The proposed method is capable of scaling well to large

data sets. For example for the Yelp dataset with 300k train-
ing reviews, optimizing the cost function finishes in the order
of a few minutes using a consumer-grade desktop computer.
In contrast, many of the methods described in our discus-
sion of related work in Section 2 do not scale well (see [30]
for a detailed discussion).

In addition, in terms of optimizing our cost function, we
can gain a very significant speed up over standard batch gra-
dient descent by using mini-batch stochastic gradient meth-

Paul Bettany did a great role as the tortured father whose
favorite little girl dies tragically of disease.
For that, he deserves all the credit.
However, the movie was mostly about exactly that, keeping the
adventures of Darwin as he gathered data for his theories as
incomplete stories told to children and skipping completely the
disputes regarding his ideas.
Two things bothered me terribly: the soundtrack, with its whiny
sound, practically shoving sadness down the throat of the viewer,
and the movie trailer, showing some beautiful sceneries, the
theological musings of him and his wife and the enthusiasm of
his best friends as they prepare for a battle against blind faith,
thus misrepresenting the movie completely.
To put it bluntly, if one were to remove the scenes of the movie
trailer from the movie, the result would be a non descript family
drama about a little child dying and the hardships of her parents
as a result.
Clearly, not what I expected from a movie about Darwin, albeit

the movie was beautifully interpreted.

Figure 4: For this review, which is labeled as positive, our
approach assigns positive sentiment to the first two and last
sentences of the review. The remaining three sentences are
assigned negative sentiment.

don’t bother.
the employees are the worst.
it’s quite sad actually because the espresso drinks are out of this
world, amazing.
still, i won’t be back.
ever.

Figure 5: A short review from the Yelp dataset

ods. For the gradient descent method, for each iteration,
the dominant complexity term in the derivative of the cost
function is O(n2), due to the computation of the similar-
ity matrix between all pairs of n instances. In a stochastic
gradient framework using a mini-batch of size b this can be
reduced to O(b2). For an epoch (visiting all n data points)
the complexity is O(n

b
b2) = O(nb). In contrast, the direct

SVM-based approach is O(n3) or O(b3) More significantly,
from a practical viewpoint, we have found in our experi-
ments that the results are not particularly sensitive to the
size b of the mini-batch. Figure 8 illustrates the training
accuracy compared to actual time, for various batch sizes,
for Yelp, our biggest dataset.

The cost of pairwise comparisons for minibatches, O(b2),
can likely be further reduced (e.g., if there are problems
that require relatively large values of b). Given that the
similarity kernel matrix is essentially a search for k nearest
neighbors, where high similarity values are the ones that
matter the most in the cost function, one could in principle



It’s not awful, but nothing really wowed me about this place.
The chips and salsa are good, and their white jalapeno sauce on
my chimi was great.
The drinks, although HUGE, were pretty watered down and not
alot of kick to them.
Probably not somewhere I would recommend to anyone for
Mexican food.

Figure 6: A short review, labeled as negative, where all of
the positive sentences are in the middle

There is only 1 good thing about this place.
The decoration of the place was very artsy.
It made me felt like I was in a fish bowl or something, I felt I was
trapped in some sort of container.
It was weird, but very interesting at the same time.
The food was not as good as I thought it was going to be.
As you enter the restaurant, you would notice a few chefs working
at the bar making fresh noodles or some dim sum.
However, after ordering a bowl of braised beef noodle soup, I
wasn’t able to tell the difference between package noodles and
the fresh hand made ones.
The soup base was a very plain beef soup, nothing special about
it.
The braised beef was juicy, (probably from sitting in the soup
for so long) but it was flavorless and there were no sauce that
accompany my order to improve the taste.
The price was extremely over price, especially for the quality of
our food.
My noodle soup was a small size and it was about $16.
If the food was a lot better and if the waiters pay more attention
to us, it would of POSSIBLY been worth the money.
I also ordered a cocktail, (Shang Hai Wave) it was very delicious,
but it was about $12.
It had a strong lychee flavor which was delicious and it has a
sweet finish.
DON’T EAT HERE.
Reasons why:
- Food was way over priced
- Service was not extraordinary
- Quality of food was deceiving

Figure 7: A complicated and large review, labeled overall as
negative, with positive and negative sentences intertwined

approximate this matrix and retrieve it very quickly with
methods such as asymmetric locality sensitive hashing [28].

The other cost for our procedure, for problems where in-
stances need to be represented as vectors using deep learn-
ing, is the cost of the convolutional network embedding. For-
tunately, training deep neural networks is a problem where
significant effort has been expended to develop fast parallel
algorithms for training such models (e.g., in image analy-
sis). In our case the convolutions are small operations that
can be massively parallelized using the small computational
units of a GPU. We were able to train the ConvNet from
[7] on our biggest dataset in a matter of a few hours in an
Amazon Web Services GPU-optimized server.

7. CONCLUSION
We presented a general framework for transferring label

information from groups of instances to individual instances.
Our approach relies on a flexible cost function that can
learn instance-level classifiers by leveraging both instance-
level similarity and group-level label information. In partic-
ular, we showed that embeddings obtained from deep learn-
ing can be a useful tool for providing effective vector rep-
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Figure 8: Accuracy vs Time in Seconds, for different batch
sizes, for the Yelp Dataset

resentations for instances in this context. Experimental re-
sults on sentiment prediction for reviews showed that the
approach is accurate across a range of different real-world
data sets and more accurate than a large range of competing
approaches. Directions for further investigation include ex-
ploring different choices of classifiers, using different embed-
ding approaches, understanding the limitations they impose
on our model, as well as the development of new applications
using this general framework.
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