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ABSTRACT
Personalization is increasingly important for a range of ap-
plications that rely on location-based modeling. A key as-
pect in building personalized models is using population-
level information to smooth noisy sparse data at the in-
dividual level. In this paper we develop a general mix-
ture model framework for learning individual-level location
models where the model adaptively combines different types
of smoothing information. In a series of experiments with
Twitter geolocation data and Gowalla check-in data we demon-
strate that the proposed approach can be significantly more
accurate than more traditional smoothing and matrix factor-
ization techniques. The improvement in performance over
matrix factorization is pronounced and may be explained by
the tendency of dimensionality reduction methods to over-
smooth and not retain enough detail at the individual level.
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1. INTRODUCTION
In recent years we have gained the ability to record hu-

man spatio-temporal behavior in increasingly fine-grained
detail. At the individual level this type of data holds the
promise of personalization: delivering information, products
and services in a manner that is optimized for each specific
individual.

A key challenge in personalization is being able to gener-
alize about an individual’s behavior and preferences beyond
their historical data. For example, with location data it is
likely that individuals will visit both old and new locations.
The challenge then becomes how to model their propensity
to visit new locations while respecting their tendency to re-
visit locations from their past. This problem is particularly

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGSPATIAL’16, October 31-November 03, 2016, Burlingame, CA, USA
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4589-7/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2996913.2996953

Figure 1: Gowalla check-in data over a 20 month period in
San Fransisco, CA.

challenging in the presence of sparse data.
In this paper we consider the problem of generalizing from

sparse location data to learn models that can make accurate
future predictions at the individual level. Our goal is to
construct for each individual i a model in the form of a
multinomial (categorical) distribution θi over M locations,
where θij is the probability that the location is j given that

individual i generated an event, with
∑M
j=1 θij = 1.

Our model uses smoothing to balance historical data from
an individual with additional information not in the individ-
ual’s history. We utilize information from the global popula-
tion, inter-location proximity, and social relations between
individuals, to generate appropriate smoothers, which are
then combined with the user’s personal history to create a
personalized model for location prediction.

The primary contributions of this paper are (1) an adap-
tive mixture model framework that infers appropriate levels
of smoothing, and (2) experimental results demonstrating
systematic improvements in prediction accuracy (compared
to traditional global methods) on a range of large-scale lo-
cation data sets.

2. BACKGROUND
Our focus in this paper is on building models from lo-

cation data in the form of event tuples 〈i, x, y, τ〉 where i
is the individual who generated the event, (x, y) is the lo-
cation (e.g. longitude and latitude from GPS) and τ is a
timestamp. Figure 1 shows an example of this type of data
for San Fransisco. If time is collapsed, this type of data can
be represented in the form of a sparse matrix of N individ-
uals by M locations where cell i, j contains a count of the
number of times individual i visited location j. From this
data we wish to infer predictive distributions θi over the M



locations for each individual.
Matrix factorization and collaborative filtering techniques

are widely used in this context, but can oversmooth individ-
ual level details and potentially lead to suboptimal predic-
tive performance (e.g., see [1]). One way of incorporating
individual-level information is to learn a geographical prefer-
ence for each individual independently and combine with the
smoothed predictions from collaborative filtering or matrix
factorization methods. The geographical component lowers
the scores of locations that are far away from the individual
and increases those that are close by [1, 10, 11]. However,
these methods do not provide a direct way to control the
degree to which the geographical context component affects
the predictions.

An alternative approach is to use the geographical prefer-
ences for each individual during the learning process [6, 7,
8, 9]. These methods project the data into a lower dimen-
sional space while taking into account geographical prefer-
ence. While this improves location prediction over direct
matrix factorization, it does not take advantage of other
available sources of information such as social ties.

Our contribution in this context is to develop alternatives
that are better at retaining the details of each individual’s
behavior. In particular our model blends an individual’s
historical data with information about geographic and social
similarity using a mixture model approach.

3. MODEL DESCRIPTION

3.1 Adaptive Smoothing with Mixtures
The two key ideas behind our approach are to (1) smooth

individual-level information towards population patterns, ge-
ographic constraints, and social contexts, and (2) learn to
combine these sources in a manner that optimizes predictive
performance.

Let θi = [θi1, . . . , θiM ],
∑
j θij = 1, be an unknown prob-

ability distribution over M locations for individual i. The
maximum likelihood estimate for each probability is θMLE

ij =
rij
ri

, where rij is the historical count for individual i and for

location j and ri =
∑
j rij . This estimate is problematic for

sparse data where rij values are often zero.
An alternative approach is the Bayesian framework where

the θi parameters are treated as random variables with a
prior [3]. In particular, given a Dirichlet prior with param-
eters α1, . . . , αM , the mean posterior estimate (MPE) (and
also the predictive probability) for the probability of cate-
gory j given individual i can be written as

θ̂ij =
rij + αj
ri + α

= γi
rij
ri

+ (1− γi)
αj
α

with α =
∑M
j=1 αj and where γi = ri

ri+α
. Thus, the posterior

mean can be viewed as a convex combination of individual
data and a prior, where the mixing coefficient γi serves to
smooth the individual estimate towards the prior.

With large numbers of individuals, another option for this
problem is to use an empirical population estimate instead
of a prior, and write the estimate in the form θi = πθIi +
(1− π)θP where θIi is the maximum likelihood (frequency)
estimate given individual i’s data , θP is the population
distribution based on pooling the location counts across all

individuals, i.e., θPij =
∑

i rij∑
i ri

, and where π ∈ [0, 1] is a mixing

coefficient.

A general weakness of this type of “population smooth-
ing” is that it pulls all estimates in the same direction, i.e.,
towards the global θP in our example above. An alternative
approach is to smooth towards data more relevant to indi-
vidual i. If we have some knowledge about the similarities of
our rows (individuals) and our columns (locations) then two
additional smoothing strategies immediately suggest them-
selves, namely smoothing using data from individuals that
are similar to individual i, and smoothing using data from
locations (columns) that are similar to the columns that are
present in individual i’s data. In particular, in this paper
we use social network friendships to measure similarities of
individuals and spatial distance for similarity of locations.

3.2 Defining the Mixture Components
Given the above we can set up a model (described below)

where there are 4 components: one “unsmoothed individ-
ual” component, a population component, and two compo-
nents based on column and row smoothing, I, P, L, S re-
spectively. We represent each individual as a convex combi-
nation (finite mixture) of component distributions as θi =∑
k∈{I,P,L,S} πk θki , where the πk are mixture weights1 with

0 ≤ πk ≤ 1,
∑
k πk = 1, and where the components are each

a categorical distribution over the M categories (locations),
with elements θkij for each component defined as follows:

I : Individual Estimate: θIij =
rij
ri
, where rij is the count

for individual i and location j and ri =
∑M
j=1 rij is the to-

tal count for individual i. This is the maximum likelihood
(frequency-based) estimate of an individual’s distribution.

P : Population Smoothing: θPj =
rj+α

′

r+Mα′ , where rj =∑N
i=1 rij is the count for location j across all individuals,

r =
∑M
j=1 rj is the sum of all counts (across all locations and

all individuals), and α′ is the parameter of a flat symmetric
Dirichlet smoothing prior (to allow for non-zero probability
mass on locations that have no counts in the historical data).
This is a smoothed global estimate of location frequencies
across the whole population, i.e., how popular a location is
in general. In the results later in the paper we used α′ = 10

M
.

L: Location (Column) Smoothing: We use kernel diffu-
sion weight matrices [5] KL(j, j′) and KS(i, i′) for column
and row smoothing respectively, where KL(j, j′) ≥ 0 is a
non-negative similarity kernel defined for all pairs of loca-
tions 1 ≤ j, j′ ≤ M , and KS(i, i′) ≥ 0 is defined similarly
for rows, 1 ≤ i, i′ ≤ N .

We can define rLij = 1
Cj

∑
j′,j′ 6=j K

L(j, j′)rij′ where Cj =∑
j,j′ 6=j K

L(j, j′) is a normalization constant and the rLij val-
ues can be viewed as smoothed pseudocounts for a partic-
ular location (column) j, obtained from a sum of weighted
counts from similar locations (similar columns), with the
weights being a function of location-to-location similarity.
From these pseudocounts we can estimate a predictive dis-

tribution for each individual i and location j as θLij =
rLij∑
j r

L
ij
.

In the results in this paper, for location (column) smooth-
ing, we use the spatial distance between two locations as an
indicator of similarity. The (j, j′)th element in KL(j, j′) is

1We also experimented with models where weights πik were
learned for each individual, but did not find that they pro-
vided any advantage in prediction in our experiments.



proportional to the probability density function of a univari-
ate Gaussian model of the distance (in kilometers) between
j and j′ (or equal to 0 for j = j′) using a fixed bandwidth
σ (we used σ = 2km in the results below).

S : Social (Row) Smoothing: rSij = 1
Ci

∑
i′,i′ 6=j K

S(i, i′)ri′j ,

where Ci =
∑
i,i′ 6=iK

S(i, i′) is a normalization constant

and the rSij values can be viewed as smoothed pseudocounts
for a particular individual (row) i, obtained from a sum of
weighted counts from similar individuals (rows), with the
weights being a function of individual-to-individual similar-
ity. From these pseudocounts we can again estimate a pre-
dictive distribution for each individual i and location j as

θSij =
rSij∑
j r

S
ij
. The social (row) smoothing is estimated using

the social graph. Each similarity KS(i, i′) is proportional
to the cosine similarity between the two binary vectors that
represent the individuals’ social ties.

3.3 Learning Individual Models
In our learning setup we have three disjoint sets of data:

Training data Dtr for estimating the components in the mix-
ture model (as described above), validation data Dv for es-
timating the mixing weights π (described below) and Test
data Dte.

In the first step of learning the training data Dtr is used to
compute the four component distributions θIi ,θ

P ,θMi ,θ
S
i as

defined earlier. Three of the four components are individual-
specific (the individual I, location M , and social S com-
ponents) and the other (population P ) is shared across all
individuals.

In the second step, the validation data Dv is used to es-
timate the mixture weights π, given the known components
estimated from Dtr. We use the Expectation-Maximization
(EM) algorithm for this purpose, and a Dirichlet prior with
parameters β · m0 over the weights, where m0 = 1

4
corre-

sponds to a flat uniform prior on the weights and β is a
scalar hyperparameter that controls the prior strength. We
learn β by using simple gradient ascent steps at the end of
each iteration in the EM algorithm. By learning the mix-
ture weights on validation data we are in effect learning the
weights that are best in a predictive sense, i.e., combining
the different smoothing components in a manner that best
generalizes to new data. It is important that the mixture
weights are estimated using a data set Dv that is separate
from the data Dtr used to estimate the components. Other-
wise EM will overfit and put all the weight on the individual
component θIi that “memorizes” Dtr and will not learn to
smooth appropriately.

4. EXPERIMENTS AND RESULTS
We consider different data sets from Twitter and Gowalla

in our experiments. The Twitter data set contains tweets
from two different regions: Orange County (California), and
New York referred to as TwOC, TwNY. The tweets were gath-
ered using the Twitter API2 from May 2015 to February
2016, selecting tweets that have geolocation (GPS) coor-
dinates for each tweet. The Gowalla data set3covers San
Francisco, and New York, referred as GoSF, GoNY. For the
experimental results reported later in the paper we retained

2https://dev.twitter.com/streaming/
3https://snap.stanford.edu/data/loc-gowalla.html

Events Individuals Locations Days
TwOC 449306 13559 11347 240
TwNY 690801 30320 11260 240
GoSF 138934 2593 7706 507
GoNY 77761 1831 7692 441

Table 1: Number of unique events, individuals, locations
and days for the different data sets.

individuals with information from at least 5 unique days and
locations with 3 events or more.

In location-based modeling the GPS coordinates of events
are typically categorized into a “vocabulary” of M locations.
For the Gowalla dataset the vocabulary is pre-defined by
a set of known high volume locations such as businesses
and public venues (e.g., [2, 12]). For the Twitter data,
we defined our dictionary using reverse geocoding based on
publicly-available geoparcels. Geoparcels represents a set of
disjoint polygons on a map and represent a specific property
or lot (such as a house, a stadium, a store/shop, an airport
etc.). The polygons vary in size and shape depending on the
function of the property (e.g., typically smaller polygons for
houses, much larger polygons for sport stadiums and theme
parks). Statistics about the number of users and locations
are presented in Table 1.

We compared the performance of our adaptive mixtures
with well-known general-purpose baselines as well as with
several state-of-the-art recently-published models for loca-
tion recommendation. We use MPE and MLE variants of the
simple multinomial model (as defined in Section 3.1), as well
as non-negative matrix factorization (NMF) and hierarchical
Bayesian probabilistic matrix factorization [4] (BPF) as our
simple baselines. We also compared to well-known methods
that incorporate the geographical preferences of an individ-
ual in order to increase the level of individual-level personal-
ization: Fused [1], iGSLR [10] and RGFM [6]. We compared
all of these methods to our proposed 4-component adaptive
mixture model (which we will refer to as AM4), with indi-
vidual, population, location, and social components.

To evaluate the models we use 60% of the data used for
training, 20% for validation and the other 20% for test. We
then perform evaluation using the test data using Average
Percentile Rank (APR) and Log-Probability scores. To com-
pute percentile rank, we sort the locations for each individ-
ual using the model’s probability for each location. We then
find the position (or rank) r for the actual locations that the
user visited in the test data. Results below are reported on
a scale from 0 to 100 with 0 being best (ranked at the top
of the list). The second metric we use is the log-probability
(for each individual) for location events in test set for that
individual. Both metrics are averaged over all the test lo-
cation events for an individual and then averaged over all
individuals to produce a single score.

We computed the APR test metric using all of the models
described above and the average log-probability test met-
ric for models that produce probability distributions as pre-
dictions. Tables 2 and 3 shows the results for the different
models (rows) for the out-of-sample evaluation. The column
shows the results across the 4 different data sets as well as
a 5th column that shows the average for each model across
the data sets.



TwOC TwNY GoSF GoNY Average
MLE 20.08 29.89 33.07 34.89 29.48
MPE 6.40 7.52 15.18 22.33 12.85
AM4 4.46 6.61 11.83 15.93 9.71
NMF 12.93 13.06 17.91 24.13 17.01
BPF 8.59 9.62 17.01 24.12 14.83

iGSLR 39.50 40.28 38.52 44.53 40.71
RGFM 8.64 8.78 15.85 24.30 14.39
Fused 8.08 9.61 16.96 24.10 14.69

Table 2: Average Percentile Rank (APR) on test data
across individuals, for each data set and averaged across
data sets. Lower score is better.

TwOC TwNY GoSF GoNY Average
MPE -4.50 -5.93 -7.21 -7.43 -6.27
AM4 -4.45 -5.79 -6.66 -7.01 -5.98
BPF -6.33 -7.11 -7.53 -8.02 -7.25
Fused -6.31 -7.10 -7.54 -8.02 -7.24

Table 3: Average Log-Probability across individuals, for
each data set and averaged across data sets. Lower score is
better.

A number of trends emerge from the data in Tables 2
and 3. The simple MPE predictor outperforms all of the
baselines (including NMF, BPF, iGSLR, RGFM, and Fused)
on all 4 data sets and for both metrics, confirming that in-
cluding individual-level detail is important for these types
of applications. The proposed AM4 method is systemati-
cally better than MPE and better than all of the other base-
lines, across all 4 data sets and under both metrics. This
clearly illustrates the superiority of the proposed mixture-
based smoothing approach relative to smoothing towards the
population (MPE) or using matrix factorization.

In an additional series of experiments we also evaluated all
of the models in terms of their predictions only on test data
locations that were new (unseen in their historical data),
e.g., for point-of-interest recommendation systems. When
compared to the other approaches we found that the AM4
method was again systematically the most accurate method
overall in terms of APR metric and was among the most
accurate in terms of the log-probability metric. The detailed
results are omitted because of space constrains.

5. CONCLUSIONS
In this paper we described a general framework for smooth-

ing of individual-level categorical distributions using mix-
ture models and we applied this framework to the problem of
learning location models from historical data of individual-
location counts. Experimental results on two data sets from
Twitter and Gowalla indicate that the proposed mixture ap-
proach can lead to significantly improved predictive perfor-
mance compared to non-mixture approaches. A key aspect
of the method is its ability to weight different sources of
information and to learn how to generalize beyond obser-
vations in the training data. The framework is relatively
simple to implement and can be implemented in a compu-
tationally efficient manner. Various extensions and general-
izations are possible, e.g., conditioning the prediction model
on time of day and day of week and extending to continuous-
space models such as kernel density representations.
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