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Predicting Consumption Patterns with Repeated
and Novel Events
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Abstract—There are numerous contexts where individuals typically consume a few items from a large selection of possible items.
Examples include purchasing products, listening to music, visiting locations in physical or virtual environments, and so on. There has
been significant prior work in such contexts on developing predictive modeling techniques for recommending new items to individuals,
often using techniques such as matrix factorization. There are many situations, however, where making predictions for both
previously-consumed and new items for an individual is important, rather than just recommending new items. We investigate this
problem and find that widely-used matrix factorization methods are limited in their ability to capture important details in historical
behavior, resulting in relatively low predictive accuracy for these types of problems. As an alternative we propose an interpretable and
scalable mixture model framework that balances individual preferences in terms of exploration and exploitation. We evaluate our model
in terms of accuracy in user consumption predictions using several real-world datasets, including location data, social media data, and
music listening data. Experimental results show that the mixture model approach is systematically more accurate and more efficient for
these problems compared to a variety of state-of-the-art matrix factorization methods.

Index Terms—Personalization, Repeat Consumption, Mixture Models, User Modeling.
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1 INTRODUCTION

A PPLICATIONS in which an individual can interact with
a large set of items are commonplace, including inter-

acting with social media, navigating e-commerce websites,
streaming of video data, and more. Automated generation
of item recommendations has become an essential compo-
nent of the user experience in many such applications [1],
enabling an individual to explore a large set of options
without being overwhelmed.

In this general context, individual consumption patterns
can broadly be divided into two types of behavior. In the
first type, consumption of items is driven by novelty: users
will typically select new items with which they have not
interacted in the past. Examples of such behavior, where
consumption is dominated by non-repeat behavior, include
movie viewing, purchasing books, and reading online news-
paper articles, etc. [2], [3]. Datasets exhibiting this pattern
have been the primary focus for much of the predictive
user modeling work in machine learning and data mining
research in recent years (e.g., [4], [5], [6], [7]). However, in
the second broad behavior type, individual consumption
patterns are characterized by a mixture of both repeated and
novel items, often with more emphasis on the repeated
aspect. Examples include listening to music artists or songs,
visiting physical locations, using apps on mobile phones,
or purchasing groceries. In many such situations users tend
to have very high repeat consumption rates. For example,
analyzing data from the Reddit and LastFM websites (data
sets discussed later in the paper) reveals that between 60
to 70% of a user’s activity, on average, involves repeat
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consumption, compared to close to zero for typical datasets
used in published evaluations of recommender systems [5].

The combination of novel and repeat consumption pat-
terns can be viewed as an example of the well-known
exploration-exploitation phenomenon that has been stud-
ied from multiple different perspectives, including psychol-
ogy (e.g., curiosity arousal [8]), economics (e.g., variety
seeking behavior [9] and brand choice [10], [11]), human-
computer interaction [12], and reinforcement leaning [1].
Recent work in recommender systems has identified the
value of learning users’ exploration preferences, suggesting
novelty, serendipity and diversity as desirable attributes for
sets of recommended items. Focusing only on accuracy can
lead to homogeneous recommendations and eventually to
user disengagement [4], [13], [14]. More broadly, under-
standing both the exploitation and exploration aspects of
consumption behavior is important from the perspective
of personalization and human-computer interaction (e.g.,
[12], [15]), providing a basis for accurate and responsive
experiences at an individual level. As one example, knowing
which apps are likely to run on mobile phone or the possible
locations a user will visit can result in better battery life of
mobile or ubiquitous devices [16].

The balance between exploration and exploitation can
be quite heterogeneous across different individuals. This
heterogeneity can be driven by individual characteristics
such as willingness to take risks and aversion of bore-
dom [9], [10]. Figure 1 shows the rate of new consumptions
over time for five users. For two of the users (shaded in
green) the consumption patterns are relatively stable with
little new exploration. Other users, such as those in blue,
select new items continuously month after month. From
a modeling perspective this means that a model needs to
strike a different balance across users between historical
behavior and new exploration. From a predictive modeling
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Fig. 1. Smoothed estimates over time of the fraction of items consumed
per month that are new (relative to a user’s past behavior) for 5 different
users. Novel consumption rates (or exploration propensities) vary signif-
icantly by user (high in blue, low in green) and can change over time (red
user). Data was taken from the Reddit datasets. The set of previously-
consumed items for each user for each month is defined cumulatively
from the historical data for that user.

perspective a key point is that there is not necessarily any
natural notion of “steady-state” or optimal behavior in this
context. A user is not necessarily going to converge to a
“true” or “optimal” set of items that they will then continue
to select forever. Real human consumption patterns evolve
over time, and consist of a combination of both repeated and
novel events.

This paper focuses on modeling users in data sets where
individual choices display this mix of both repeat and novel
item consumption. This topic has been relatively unexplored
in the data mining and machine learning literature (with
a few exceptions, which we discuss in more detail later).
The most widely used approaches for modeling user-item
consumption data in recent years are based on matrix fac-
torization (MF) (e.g., [3], [17]). These methods represent each
user and item by a latent vector of size k where (typically)
k is much smaller than the number of users or items. The
motivation is to find k hidden features and represent users
and items as a linear combination of these features, e.g., by
movie genre. This has been found to work well for discovery
of new items, by leveraging dependencies among columns
to generalize about previously unseen entries in the matrix.

However, as we demonstrate later in the paper, for data
with significant repeated content, MF techniques are unable
to accurately capture detailed aspects of repeat behavior at
the individual level. This is driven in some sense by the in-
herent (lossy) nature of the low-dimensional representation.
A more in-depth analysis is presented in Section 3.

Instead, for the problem of consumption prediction and
user modeling we propose to model such data through a
two-component mixture of multinomials, with one compo-
nent for repeat (exploitation) behavior and one for novel
(exploration) behavior. While multinomial mixture models
have been widely and successfully used across a broad
number of applications in the past, the specific contribution
of this work is in their application to consumption data and
studying their efficacy. The mixture approach results in a
user model that allows for personalization at two levels:
(1) at the item-selection level (by considering a user-specific
distribution of item consumption), and (2) at the level of

balancing an individual’s mix of repeated and novel behav-
ior (through individualized mixture weights). Our primary
goal in this paper is to study and illustrate the effectiveness
of a relatively simple and scalable model that can learn a
user’s propensity to explore.

Towards that goal, we investigate real world data in
which user choices are focused on a relatively small subset
of the overall choice set. We analyze several datasets from
different domains that are characterized by different levels
of repeat consumption. Our datasets include location data
from location-based social media, selection of music artists
for music streaming applications, and modeling of partici-
pation in online communities.

We find that the mixture approach outperforms all base-
lines in predictive accuracy. Across seven datasets we show
that the method is flexible enough to be used in a range of
settings and different levels of repeat consumption. We also
show how this approach is scalable, robust to noise, and can
readily be extended to incorporate external information.

2 PROBLEM DEFINITION AND DATA SET CHARAC-
TERISTICS

2.1 Problem Definition
Assume we have a set of U users and M items, and nuj ∈
{0, 1, 2, . . .} corresponds to the number of times user u has
consumed item j in the past, e.g., the number of times that
user u purchased product j or that u listened to artist j. We
can represent this data as a U×M matrix of counts N which
is typically very sparse.

We assume a scenario where the data are collected and
aggregated over some time period T (e.g., one year of data),
and our goal is to generalize from the historical data and
make predictions for some time period (T, T + ∆t], where
∆t is some window of, e.g., corresponding to the next week
or month. The goal is to estimate for each user u

θu = [θu1, . . . θuM ] ,
∑
j

θuj = 1

where θuj is the probability that user u consumes item j
conditioned on the event that u consumes some item, i.e., a
predictive multinomial distribution over M possible items.

2.2 General Characteristics of Repeat and New Con-
sumption Data
To provide some general context for the problem we take
a look in Table 1 at characteristics of count matrices N for
several different real-world user-item datasets that exhibit
both repeat and novel consumption behavior. The first three
data columns show the size, the total number of non-
zero entries, and the density (second column divided by
the first) for each data set. The overall choice set is very
large (ranging from 7k to 20k items). Users typically only
consume a very small fraction of these items, which is the
driving force behind the the matrix sparsity. The 4th column,
n̄, shows the mean count of the non-zero elements in each
matrix, indicating the average number of times that items
are consumed in each data set conditioned on the fact that
they are consumed at least once. Another way to interpret
this number is to see that n̄ − 1 is the average number
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TABLE 1
General characteristics of dataset matrices: matrix size (total users and

items), number of non-zero entries, matrix density, and average
number of repeat consumptions per item n̄.

Size: U ×M # Entries Density n̄
redditS 20k x 21k 416k 0.10% 13.2
redditT 113k x 21k 7M 0.29% 41.2

lastfm 992 x 15k 547k 3.86% 27.5

goNYloc 1k x 7k 43k 0.61% 1.5
goSFloc 2k x 7k 71k 0.51% 1.6

twOCloc 13k x 11k 94k 0.07% 3.9
twNYloc 30k x 11k 242k 0.07% 2.3

of repeat consumptions per item. There is high variability
in these mean repeat consumption rates across the data
sets: in digital environments (reddit and lastfm) there are
relatively high repeat rates while in the physical location
environments (tw and go) the repeat rates are much lower.
Below we provide additional details and context for each
dataset.

2.3 Data Sets with Repeat and Novel Consumption
2.3.1 Reddit Posts
Reddit is a social network/link aggregator, which has more
than 15 million unique monthly users.1 The website allows
users to post links and text, in topic-focused sub-categories
(subreddits) resulting in discussions via nested replies (com-
ments). Currently there are ∼ 70M comments (∼ 30Gb) per
month on the website making the amount of text per month
be larger than all of Wikipedia.

In this work we focused on posts from 2015 and 2016
and worked with subreddits with at least 1000 subscribers,
leading to M ≈ 21, 386 subreddits (items).2 Users with less
than 10 posts were filtered out. Each count nuj corresponds
to the number of times user u posted a comment in subred-
dit j. From this set of users we extracted two datasets: reddit
sample (redditS) and reddit top (redditT). redditS
refers to a random sample of U = 20, 024 users while
redditT refers to U = 113, 557 users who posted more
than 1000 times in 2015. We use Jan to Dec 2015 as training
data, Jan to Feb 2016 for validation (parameter tuning), and
Mar to April 2016 for testing.3

2.3.2 Music Data
We use a publicly available dataset consisting of the listen-
ing history of U = 992 users from lastfm.com.4 The items
in this case are artists, and we use those with more than 100
songs, leading to M = 15668 items. We use counts from the
years 2006, 2007, and 2008 as training data, the first three
months of 2009 for validation, and the next three months
as test data. Each count nuj corresponds to the number of
times user u listened to artist j.

1. https://www.reddit.com/r/AskReddit/about/traffic/
2. Data from http://redditmetrics.com/top, retrieved in 2016.
3. Publicly available at https://archive.ics.uci.edu/ml/datasets/

Repeat+Consumption+Matrices
4. http://www.dtic.upf.edu/∼ocelma/MusicRecommendationDataset/

lastfm-1K.html

TABLE 2
Mean consumption and repeat consumption characteristics across

datasets (for the training data). The datasets vary significantly in terms
of the rates of user consumption and repeat percentages.

Unique items per
user (average)

User-item pairs that
are repeats

redditS 20.8 61.1%
redditT 61.9 71.4%

lastfm 547.0 69.5%

goNYloc 43.0 16.3%
goSFloc 35.5 18.3%

twOCloc 7.2 40.4%
twNYloc 8.1 40.7%

2.3.3 Location Data: Twitter
We use two Twitter datasets collected from geo-located
tweets (latitude, longitude) from two different areas, Orange
County and New York, which we will refer to as twOCloc,
twNYloc. The data was collected between May 2015 and
February 2016. We discretized the lat/lon geolocations to
a set M locations (items) in the same manner described
in [18], using reverse geocoding based on publicly-available
geoparcel records. We filter out users that did not have tweet
events on at least 5 different days and filtered out locations
with less than 3 events. We used the first eight months as
training, the next month for validation and the next month
for test. The counts nuj correspond to how many times a
user u tweeted at a specific location j.

2.3.4 Location Data: Gowalla
The Gowalla data set5 was introduced in [19] and covers San
Francisco and New York—these data sets will be referred to
respectively as goSFloc and goNYloc. We used the same
filters (on user and item counts) as for the Twitter data
and used September 2009 through June 2010 for training,
the next two months for validation, and the following two
months for testing. This dataset comes from check-ins at
popular locations so the locations are already discretized.
The counts nuj correspond to how many times a user u
checked-in at a specific location j.

2.4 Characteristics of Repeat Consumption (Exploita-
tion)
We explore the characteristics of repeat consumption for
each dataset (training data) in Table 2. The first data col-
umn contains the mean number of unique items per user,
providing a sense of the density at the user level. All of
the data sets are highly sparse at the user level as well,
with lastfm dataset being the most dense, since it spans a
longer timeframe (3 years for lastfm versus a few months
for the other datasets). The second column computes what
percentage of the unique items per user consist of repeats,
i.e., have counts nuj > 1. These numbers are very high
for the reddit and lastFM data sets (in the range of 60 to
70%), in the medium range for the Twitter data sets (around
40%), and lower for the Gowalla data sets (16 to 18%).

5. Publicly available at https://snap.stanford.edu/data/loc-gowalla.
html
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Fig. 2. Empirical probability that any cell in the user-item count matrix is
a specific count. Across all datasets the counts tend to follow a heavy-
tailed distribution. (Best viewed in color).

These percentages are a key differentiator between repeat
consumption data and data sets such as movie reviews or
book purchases (which tend to have repeat consumption
rates close to 0, e.g., [5]).

All of the datasets also have a non-trivial percentage of
high counts, which is a key aspect of repeat consumption
behavior. Figure 2 illustrates this phenomenon by plotting
the relative frequency of particular counts in each data set
on a log-log scale. Each of the datasets has a heavy-tailed
distribution with considerable probability mass assigned
to counts greater than one. The plots also show that the
counts for the digital environments (Reddit and LastFM)
are systematically and significantly higher than the counts
for the location data sets (in the physical world, Twitter and
Gowalla). In one sense this could be viewed as surprising, as
one might expect more exploration behavior (i.e., more low
counts spread across more items) in digital environments
that require less resources (time and energy) to explore.

However, as mentioned before, online datasets have
much higher total counts, as events are easier to generate.
For example users tend to listen to many more songs than
visit locations. Another mitigating factor is that there are
various constraints on resource consumption in the digital
world as well as in the physical world. For Reddit, for
example, online communities have their own behavioral
norms, and while there is no direct monetary cost to posting,
writing a successful comment often requires time in order to
adapt to its norms [20].

2.5 Characteristics of New Consumption (Exploration)

To explore characteristics of new item consumption, in Table
3 we analyze the percentage of item pairs that are new
relative to the total number of item pairs. A user-item
combination is considered new if it has a count of 0 in the
training N matrix and has a count greater than 0 in the test
data. The first column in Table 3 shows the percentage of
new user-item pairs, relative to all non-zero pairs in the test
data, for each data set. The percentage ranges from 20% to

TABLE 3
Exploration rates: percentages of new items and events per user, in the

test data, across data sets. There is significant variation across
datasets in terms of how much exploration occurs per user.

User-item pairs that
are new in test data

User-item events that
are new in test data

redditS 29.8% 11.7%
redditT 20.0% 5.7%

lastfm 21.4% 15.3%

goNYloc 73.2% 62.7%
goSFloc 67.3% 55.0%

twOCloc 45.6% 22.4%
twNYloc 63.5% 42.1%

73% across the data sets, with higher rates of exploration
(new items) for the physical location data sets compared
to the digital data sets. The rate of new item consumption
is relatively high in general across the data sets. Thus, an
important aspect of the user modeling problem is how well
a predictive model can generalize to new items beyond
items that an individual consumed in the past.

The second column in Table 3 shows the percentage of
new events, where events are defined as each individual
user-item interaction, i.e., a count of 10 would correspond
to 10 events. This results in a re-weighting towards actual
user-item interactions rather than unique user-item pairs
and amplifies the difference between the digital data sets
(which have relatively high repeat counts) and the location
data sets (which spread more of their counts towards new
interactions). In general, across the datasets, the weighted
percentages for events (column 2) are significantly lower
than for user-item pairs (column 1), indicating that on av-
erage users embrace change gradually. They might explore a
new item, but they will on average choose it less often than
a familiar option.

Differences do not only exist across datasets, but also
across users within the same dataset. Two important differ-
entiating factors are (1) users’ individual exploration rates,
and (2) their overall consumption rates. The exploration
rate is defined for each user as (a) the number of events
corresponding to new items for a user divided by (b) the
total number of events for the user, where both numbers are
computed on the test set. Figure 3 shows the exploration rate
as a function of the number of observed events per user, for
the redditS dataset (similar plots were observed for the
other data sets). Users are placed into equal-sized buckets
based on the number of training data points, and each box
shows the median exploration rate (orange line) and inter-
quartile range.

The plot illustrates that the median tendency for explo-
ration per user tends to decrease systematically as a function
of the total number of consumptions per user (x-axis). This is
not surprising given that we would expect users who have
consumed fewer items to be more inclined to explore new
items—and conversely users who have consumed many
items tend have fewer options for exploration and tend to
explore less. However, as was illustrated in Figure 1, this
pattern is not universal across users. The relatively high
variance in exploration rates (y-axis) across the boxplots



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 30, NO. 8, AUGUST 2018 5

0 -
 37

37
 - 5

5
55

 - 8
1

81
 - 1

19

11
9 -

 18
1

18
1 -

 30
7

30
7 -

 65
1

65
1 -

 12
k

Total Number of Events per User in Training Data

0.0

0.2

0.4

0.6

0.8

1.0
Ex

pl
or

at
io

n 
Ra

te

Fig. 3. For each user of the redditS dataset, the y-axis is the fraction
of events (posts) in new subreddits in the test data per user, as a
function of the number of total events a user has in the training data
(x-axis). Exploration rates are clearly user dependent and many users,
including those with large amounts of data, do not necessarily converge
to a steady-state distribution for their choices (i.e., their exploration rate
remains high).

indicates that at all levels of consumption there is con-
siderable heterogeneity in user behavior, with exploration
rates ranging from close to 0 to close to 1 across different
users. In other words, collecting more observations about a
user does not necessarily lead to convergence to a steady-
state preference distribution for the user (with exploration
rates close to zero). This observation is in agreement with
research that suggests that the propensity to explore is an
intrinsic user characteristic [9], [10], indicating the need
for personalization in environments where exploration is a
common feature of user behavior.

3 MATRIX FACTORIZATION AND OVERSMOOTHING

Matrix factorization (MF) is perhaps the most widely-used
approach over the past decade for modeling of sparse user-
item consumption data sets [3], [7]. Below we summarize
the modeling assumptions behind MF and then highlight
its primary shortcoming in the context of data that contains
both repeat and new items, namely, MF’s tendency to sig-
nificantly oversmooth beyond the historical observations.

3.1 Matrix Factorization Review

Given a U ×M matrix N with entries nuj ∈ {0, 1, 2, . . .}
(i.e. counts), the goal of MF is to produce an approximation
N ≈ N′ = WH by estimating matrices W and H, which
are of dimensionality U×k and k×M respectively. Typically
k is significantly smaller than M (and U ) (i.e., a reduced
rank approximation) and each row vector in N is modeled
as a linear combination of k M -dimensional basis vectors.

MF can be viewed from a probabilistic perspective by
assuming the counts are drawn from some distribution
whose mean is determined by the W and H matrices. Many
MF approaches assume observations with Gaussian noise:
nuj ∼ N(µ = wuhj , σ

2
0) where σ2

0 is some fixed variance.

TABLE 4
Comparison across all data sets of the actual fraction of new items per
user compared to the probability mass assigned to new items by NMF.

NMF consistently over-estimates how much probability should be
assigned to new items, i.e., the likelihood of new items being

consumed.

Fraction of
new items NMF 20 NMF 50 NMF 100

redditS 23.2% 66.0% 60.7% 54.4%
redditT 7.5% 53.1% 47.3% 40.2%

lastfm 30.3% 70.6% 68.4% 61.8%

goSFloc 65.9% 93.5% 90.5% 87.9%
goNYloc 69.5% 94.9% 91.7% 87.9%

twOCloc 35.8% 67.6% 61.8% 62.9%
twNYloc 55.1% 88.2% 82.6% 73.3%

Amount of
Oversmoothing 33.6% 29.2% 24.2%

However, for count data a more appropriate model is
to use a distribution over non-negative integers, such as a
Poisson distribution. This leads naturally to Poisson matrix
factorization (PF) [17]: nuj ∼ Poisson(λ = wuhj). A
non-probabilistic alternative, which retains the non-negative
constraint, is non-negative matrix factorization (NMF), where
all elements of W and H are constrained to be non-negative,
in turn ensuring that the reconstructed matrix N′ contains
only non-negative entries. We investigate both PF and NMF
in the experimental results section later in the paper.

In this paper we use MF techniques such as PF and NMF
to generate approximations of observed count matrices over
some historical period T . We can view the reconstruction N′

as a matrix of expected counts: the low-rank representation
forces the reconstruction to generalize beyond the training
observation window T . For prediction purposes we can
normalize these counts per user to produce a multinomial
probability distribution for each row (user), e.g., for NMF,
PNMF
u with entries PNMF

uj = n′uj/
∑
l n
′
ul that sum to 1,

where n′uj is the reconstructed (expected) count for user
u and item j from NMF. These normalized probability
estimates are the basis for our discussion of MF in this
section and in the experimental results later in the paper.

3.2 Systematic Oversmoothing in Matrix Factorization
The strength of MF techniques lies in their ability to leverage
patterns of dependence among columns and to find low-
dimensional basis functions that can provide useful approx-
imations of low-order moments of the original matrix, e.g.,
row/column means and row/column covariances.

However, this also implies that the representation cannot
accurately model all rows of the matrix (i.e., the counts
patterns for specific users) in detail. The low-dimensional
bottleneck inevitably results in a lossy compression. For
data sets with significant repeat consumption this can be
a significant drawback since the compression can cause the
model to forget details of an individual’s history.

We ran NMF on each of the data sets and evaluated how
much probability mass it places on new items relative to
repeated items. We measured 1

N

∑
u

∑
j:nuj=0 P

NMF
uj , i.e.,

the average probability mass per user placed on items that
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(b) redditS (sample of 2000 users)
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(c) goSFloc

Fig. 4. Scatter plots of the assigned probability mass of NMF with 100 components, versus the ground truth, for the lastfm, redditS (sample of
2000 users ) and goSFloc datasets. NMF overestimates the probability of new items (oversmooths) for considerably more users (red dots) than it
underestimates (blue dots).

do not occur in the training data. In Table 4 we compare
these numbers with the actual fraction of new items ob-
served in the test data, for NMF with k = 20, 50, 100. We
see that NMF oversmooths by a large margin in all cases.
It assigns significantly more probability mass to unseen
items in the training data compared to the actual fraction
of new items that occur in the test data, suggesting that the
model is miscalibrated (when used for prediction) in terms
of how many new items each user will select. Because of this
oversmoothing, NMF will have difficuilty modeling users
exhibiting high repeat rates (such as those shaded in green
in Figure 1). As the dimensionality k increases, the calibra-
tion gradually improves (as expected), suggesting that for
very large k this oversmoothing would be less of an issue—
but using very large values for k runs counter to MF’s goal
of generalizing through a low-rank representation.

Figure 4 contains scatter plots showing, per user, how
much probability was assigned by NMF compared to the
true fraction of new items, for three of our datasets – one
of each type (similar results were obtained for all datasets).
Points far away from the diagonal correspond to significant
miscalibration. The plots also have the number of users
above and below the diagonal, as well as the root mean
squared error (RMSE) between true and observed, for each
dataset. The model overestimates the probability of new
items for many more users than it underestimates, by sig-
nificantly oversmoothing, on all datasets. In fact very few
users were predicted to have very few or no new items,
which should not be the case: there are a significant number
of individuals with no (or almost no) new items in their test
data (see the x = 0 point in each plot in Figure 4).

Home-Work Simulation. A simple example of the im-
portance of reconstruction can be derived from our location
datasets. Many users have a home and work location, from
where they create the majority of their datapoints. A model
that captures this should have a spike in probability for each
users’ (rows’) home and work location, even though this
location is largely different for every user. The smoothing
tendency of MF methods however tends to discourage such

bursty behavior.
To illustrate this point, we generate an artificial dataset

with similar properties. We create a U×L matrix simulating
an extreme case of users with home and work locations.
There are L = 1000 locations h% of which are considered
home and the rest are work. We experiment with different
values of U and h. Each user selects a home and work
location at random and adds one datapoint in each. While
some home and work locations do coincide, this effect is
small, as there are only 5 times more users than locations at
most, and the choice is done uniformly. We then factorize
the matrix with k components into W and H and normalize
each row of the resulting factorized matrix fm = W ∗H to
sum to one. We then measure the total probability assigned
to each users’ home and work locations (combined) in the
matrix fm, which should be close to 1 for an ideal model.

Figure 5 illustrates how much probability mass was as-
signed by NMF to the home and work locations combined,
for various U, h for a number of components. While 200
components constitute 20% of the rows, which is an un-
usually high number of components, the model still cannot
model this behavior with more than 65% accuracy.

4 MIXTURE MODEL APPROACHES

As stated in Section 2 our goal is to estimate for each user
u, a multinomial probability distribution over all items,
representing the probability with which user u will select
each item. As a simple alternative to the latent space decom-
position methods, we consider the use of multinomial-based
mixture models. A two-component mixture representation
provides a simple way for a model to combine both (a) de-
tails about an individual’s history of consumption with (b)
broader global population preferences. In the multinomial
mixture approach one of the components can memorize the
details of an individual’s past consumption patterns, while
the other component can use broader population patterns
to generalize beyond the user’s observed data. The mixture
weights of the two components reflect an individual’s rela-
tive propensity for repeat versus novel item consumption.
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Fig. 5. Probability mass that NMF puts on home and work locations for
simulated data with various values of k. The probability mass should
ideally be close to 1, but NMF’s tendency to oversmooth inhibits such
behavior.

4.1 Maximum Likelihood and Bayesian Estimation

To motivate the mixture model approach we first review
maximum likelihood and Bayesian estimation of multino-
mial parameters. A common approach for estimating θ̂u is
via maximum likelihood estimates (MLEs). For multinomial
models the MLEs are the relative frequencies from the
observed data:

θMLE
uj =

nuj
nu

, nu =
∑
j′

nuj′

where nu is the total number of items consumed by u. This
estimate θMLE

uj captures perfectly the user’s historical data
but it is not as useful in a predictive sense since it assigns
probability mass zero to any previously unseen items.

In order to generalize beyond a users previously con-
sumed items to items that are new for that user, one
approach is to smooth the probability mass by adopting
a Bayesian perspective where we view θu as a random
variable with a prior, and infer a posterior distribution
for θu given the data and the prior. A natural choice is a
conjugate prior for the multinomial model, i.e., the Dirichlet
prior with parameters α = [α1, . . . , αM ], which results in
a posterior Dirichlet distribution on θu. The mean of this
posterior distribution, for each parameter u and items j,
θMPE
uj , is:

θMPE
uj =

nuj + αj
nu +

∑
j αj

where MPE refers to the mean posterior estimate.
For sparse data this posterior estimate is more useful

than the MLE as can generalize by assigning non-zero
probability mass to events that have not occurred in the
past (observed) data, i.e, to items that a user has not yet
consumed. For example, if nuj = 0 for some user u and
item j, we still get a non-zero estimate of the probability of
that combination occurring in the future due to the presence
of αj in the equation above. Note that α =

∑
j αj plays the

role of the “strength” of the prior above since it acts as a
pseudocount in the denominator relative to the actual total
count nu for user u.

In the context of our problem, with multiple users u, we
use an informative prior for the αj values, e.g., one that
reflects population preferences. We use a simple “global” or
population prior where we assume that each αj is propor-
tional to nj =

∑
u nuj (the popularity of item j across all

users), corresponding to an empirical Bayes approach. (In
practice we make the αj proportional to nj + 1 to avoid
issues with items that have zero count in a training data
set). We can thus write the MPE as

θMPE
uj =

nuj + ηαj
nu + η

(1)

where αj =
nj+1
n+M , n =

∑
j nj , and the scalar η > 0

controls the degree of smoothing. Since we are interested
in the predictive capabilities of our models, η is treated as a
global hyperparameter that can be optimized. We determine
its value via grid search on validation data.

4.2 Learning Predictive Mixture Weights
It is informative to rewrite Equation 1 above in the form of
a mixture model:

θMPE
uj = γu

nuj
nu

+ (1− γu)
αj
η

, γu =
nu

nu + η
(2)

This form illustrates that the first component in this mixture
is the frequency-based MLE (from the user’s history) and
the second component models the global population pattern
of item usage. This mixture-based view of the MPE provides
another way to see how Bayesian smoothing works in this
context, namely as a weighted convex combination of a
user’s historical data and a smoother population pattern.

It is important to note that in the MPE approach, the
mixture weight γu = nu

nu+η
in Equation 2 is entirely a

function of the total amount of data nu for user u and the
strength of the prior η. For global, fixed η, as we accumulate
more data for a user u, this model places more emphasis
on the user’s history (i.e., repeat behavior) and less on new
items (i.e., novel behavior).

This exposes a significant limitation of this smoothing
approach, namely that the balance between exploit and
explore, for a user, is a function only of the number of observed
points in the training data rather than reflecting any intrinsic
explore-exploit characteristics of the individual. The mis-
match arises because so far we have implicitly assumed
that we are trying to learn a static distribution θu for
each user. However, our analysis from Section 2 shows that
this assumption does not match the reality of real-world
data sets in the sense that users are constantly exploring
new items over time (e.g., see Figures 1 and 3). Thus, to
a large extent there is no natural notion of a steady-state
distribution for θu and the exploration rate of a user does
not solely depend on the number of observed data points.

To address this we propose using the general mixture
form of the MPE in Equation 2 but learn the mixture
weights on an individual basis to reflect the explore/exploit
characteristics of individual users u. For convenience of
notation we refer to the two multinomial components as
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Individual (θI ) to reflect repeated behavior, and Population
(θP ) to reflect novel consumption:

θIuj =
nuj
nu

, θPj =
nj + 1

n+M

The probability of user u consuming item j is computed as:

Puj = πuθ
I
uj + (1− πu)θPj (3)

where πu is a mixture parameter that we learn. We estimate
the component parameters, θIuj (per individual) and θPj
(global), using the training data.

The model’s ability to weight each component allows
it to represent the trade-off between exploitation (θI com-
ponent) and exploration (θP component) on a per user
basis. This model also has a simple and intuitive genera-
tive interpretation. If a user wishes to choose an item for
consumption, she will flip a biased coin. With probability πu
she will engage in exploit behavior and sample an item from
her “repeat” component θIu (recall that all items that were
not consumed before have probability 0 in this component).
With probability 1−πu she makes a selection that she has not
made before in accordance with the global item popularity.

4.3 Parameter Estimation

The learning process of our method is split into two steps,
learning the parameters for the components and then learn-
ing the weights. We enable personalization in our model
by learning different mixing weights πu for each user on a
disjoint validation set. However, since not all users have an
adequate amount of validation data, learning these weights
independently is prone to overfitting. To overcome this
problem we share information across users in the form
of another empirical Bayesian prior: we first calculate a
global population mixing weight π and then use the value
of that as a prior. We model the πu’s with a binomial
distribution using a Beta prior B(βI , βP ) and calculate the
MPE. The strength of the Beta prior can be interpreted as
pseudocounts—we set it to be proportional to the average
number of points in the validation set, specifically

B(βI , βP ) = B(π × n̄, (1− π)× n̄)

where n̄ is the average number of points per user in the
validation set.

The mixing weight πu represents the propensity of user
u to repeat their choices. While on the one hand we want
the model to tailor this number to each individual, on the
other hand the prior provides an effective shield against
overfitting. The prior allows active users (with a lot more
data than average) to tend towards their own personal
exploitation rate, while users that have considerably less
validation datapoints than the population remain close to
the global weight. It also provides a solution for users that
have no data in the validation set; their mixing weight is set
to the population value, πu = π.

We use the Expectation-Maximization (EM) algorithm to
learn the global and individual mixing weights. Since the
component multinomials are fixed during learning of the
weights, the algorithm tends to converge quickly in just a

few iterations. A more detailed description of the E and M
steps can be found in the Appendix.

Setting the novelty component in the mixture to be
proportional to global population preferences is a relatively
simple approach for modeling the exploration of new items
by users. One could also incorporate into this framework
more informed component models, for both the repeated
and novel consumption components, using ideas such as
those presented in [4], [21], [22]. For example, a natural
modification of our model is to make the second component
more tuned to each individual u, e.g., by smoothing towards
data from a set of individuals that are in some sense similar
to u. We explore the idea of more components in Section 5.5,
where we introduce additional components for the model
to smooth towards, based on row-smoothing and column-
smoothing in a manner similar to collaborative filtering.

5 EXPERIMENTS AND RESULTS

5.1 Evaluation Metrics

We use two evaluation metrics in our experiments. The first
metric is the log loss i.e., the negative of the average log-
probability of each event (e.g., user-item consumption) in
the test data:

− logP = − 1

Nte

∑
u

∑
j

nuj logP (j|u) (4)

where nuj here corresponds to counts in the test data set.
This metric is widely used in the evaluation of machine
learning algorithms that produce probabilistic predictions
(e.g., [23], [24], [25], [26]). A model that assigns higher prob-
ability, or lower negative log-probability, to the observed test
data is preferred over a model that assigns lower probability
(or a higher negative log-probability).

In terms of a baseline, using the same population proba-
bilities (i.e., the marginal probabilities of each item across
all users) to make predictions for each user u will get a
score roughly equivalent to the entropy of the data. If users
consumed only one item, and a model assigned probability
1 to that item, the log-loss would be 0. However, since users
typically consume multiple items, the lower bound for the
log-loss is obtained by using the MLE of the test data for
prediction for each user. Making perfect predictions (i.e.,
assigning probability proportional to the number of times
a user selected each item in the test set) achieves this lower
bound. Thus, the log-loss can be thought of as measuring
the predictive ability of a model in terms of compression
(of future data) with a natural scale between the entropy of
the global model as an upper bound and the log-loss of the
MLE of the test data as a lower bound.

The second metric Recall@k is defined as

Recall@k =
1

Nte

∑
u

∑
j

nujI(rank(u, j) ≤ k)∑
j′ nuj′

(5)

which evaluates the ability of the model to assign high rank
to observed items in the test data set for each user. For a
given model, for each user u, the predicted probabilities
over the M items are sorted in descending order, and
Recall@k measures what fraction of items (that u actually
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consumed in the test data set) were ranked in the top k
by the probability model for u. Higher scores are better
for recall and the global model (using the same ranking
for everyone, based on global popularity) can be viewed
as a lower-bound baseline. Note that Recall@k is less fine-
grained than log-probability: it only focuses on the top-K
ranked items and only analyzes the order of these items,
not if their probabilities are calibrated correctly.

5.2 Models Evaluated
We compare the mixture-based approach to a set of general-
purpose recommender system methods that model user-
item interactions through latent factors [3]. These ap-
proaches are frequently used in modeling of large sparse
arrays of user-item interaction data. For all methods we
used a disjoint validation set to optimize hyper-parameters
for each method and report the best performance results on
a separate held-out test dataset.

• Global: This is a baseline global multinomial model
with probabilities proportional to the global popular-
ity nj of each item.

• NMF: Non-negative matrix factorization based on
the work of [27], [28]. In our evaluation we used
an off-the-shelf implementation available via scikit-
learn.6

• HBPF: Hierarchical Bayes Poisson factorization [17].
This method predicts user-item consumption counts
using the Poisson distribution. Hierarchical priors
are set on both the user and item latent factors
in order to take item general popularity and user
general activity into accounts, making this method
suitable for skewed and sparse data.

• LDA: Latent Dirichlet Allocation [29]. A Bayesian
probabilistic model that learns multinomial latent
factors via a generative process. LDA can be viewed
as a general-purpose matrix factorization method for
count data [30].

• MPE: The MPE-based smoothed multinomial as de-
fined in Equation 2. The population preference is
used as a prior, and its strength is optimized using
the validation set.

• Mixture: The proposed predictive mixture model as
defined in Equation 3 with personalized mixture
weights.

For the MF methods we evaluated different numbers of
latent factors k from 50 to 500 and invariably found that
the largest number performed best, so all results below are
for k = 500.

The latent factor methods based on matrix factorization
(NMF, HBPF) do not directly produce multinomial probabil-
ities of the user preferences, θ̂u. The Poisson based method
HBPF produces estimates of λuj , the mean rate (counts
per unit time) at which user u consumes item j in the
training data. The NMF method produces an estimate n′uj
of the expected count for user u consuming item j given
the model and given the training data. We convert these
rates and expected counts to multinomial probabilities by
normalizing each user’s rates/counts over items as follows:

6. http://scikit-learn.org

TABLE 5
Average negative log probability (log-loss) on the test data for different

algorithms across different data sets. Lower scores are better.
Best-performing methods indicated in bold font. LB is the lower bound

for optimal predictions per data set.

Global NMF HBPF LDA MPE Mixture LB

redditS 6.89 4.09 6.39 4.32 3.39 3.37 1.70
redditT 6.70 3.82 6.36 3.99 3.07 3.04 1.97

lastfm 8.53 6.63 8.02 6.76 6.43 6.35 4.09

goSFloc 8.19 7.56 9.05 7.76 7.66 7.26 2.88
goNYloc 8.53 8.08 9.15 8.21 8.71 7.90 3.34

twOCloc 7.02 4.39 9.57 4.37 3.50 3.42 0.71
twNYloc 7.29 5.84 9.46 6.08 4.73 4.74 0.72

θuj = λuj/
∑
j′

λuj′ or θuj = n′uj/
∑
j′

n′uj′ (6)

In order to avoid zero probabilities when computing the log-
loss in the predictive distribution, we add a small constant
ε to each count before normalizing each row. The value of
this constant ε is optimized on the validation data for each
MF model, to make each one as competitive as possible in
terms of prediction.

5.3 Prediction Accuracy

Table 5 contains the results for all methods and all datasets
for log loss, as well as the theoretical lower bound (LB),
corresponding to optimal probability distributions for each
test data set, to provide a sense of scale of each problem.
We can see that MF methods (NMF, HBPF) are signifi-
cantly outperformed by the competing methods and on
some data sets are worse in some cases (e.g., for HBPF)
than the global model. This is a direct consequence of the
oversmoothing discussed earlier in Section 3.2. LDA is in
some cases more accurate than the MF methods but can
be significantly worse than the MPE and predictive mixture
models on some datasets. The predictive mixture is the best-
performing model on 6 of the 7 of the datasets, but on
several datasets the MPE model is very close and is slightly
better on one dataset. These differences between MPE and
the predictive model are not significant on most of the data
sets, indicating that the main ingredient for higher accuracy
on this prediction task (relative to MF methods and LDA)
is the incorporation of a memory-specific component that
can represent the details of the specific items that a user
has consumed in the past. However, as discussed earlier,
given a choice of MPE versus the predictive mixture, we
would favor the latter since it has the ability to learn mixing
weights that reflect true explore/exploit characteristics at
the individual user level rather than weights that are just
functions of how much data has been observed for that user.

As discussed earlier, we observed that matrix factor-
ization techniques improve in accuracy as the number of
latent factors is increased. However such increases in the
number of latent factors results in the complexity and time
being increased a significant factor, which is potentially
problematic for scalability to large real-world problems.
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TABLE 6
Average Recall@100 on the test data for different algorithms across

different data sets. Higher scores are better. Best-performing methods
indicated in bold font.

Global NMF HBPF LDA MPE Mixture

redditS 0.38 0.58 0.69 0.73 0.82 0.82
redditT 0.45 0.72 0.84 0.81 0.92 0.92

lastfm 0.18 0.33 0.34 0.40 0.49 0.49

goSFloc 0.27 0.30 0.23 0.37 0.42 0.44
goNYloc 0.22 0.22 0.17 0.30 0.37 0.38

twOCloc 0.43 0.49 0.57 0.67 0.74 0.76
twNYloc 0.32 0.35 0.42 0.50 0.61 0.62

TABLE 7
Average values of exploration probability (over all users) for the mixture

model (1-π̄), for MPE, and for NMF with a large number of latent
factors.

True Mixture MPE NMF 100 NMF 500

redditS 23.2% 15.0% 36.5% 54.4% 40.72%
redditT 7.5% 7.5% 2.9% 40.2% 24.13%

lastfm 30.3% 24.0% 12.5% 62.9% 39.18%

goSFloc 65.9% 65.9% 72.8% 84.0% 67.58%
goNYloc 69.5% 66.2% 78.6% 82.8% 59.43%

twOCloc 35.8% 32.9% 71.8% 63.2% 56.36%
twNYloc 55.1% 59.2% 77.0% 71.9% 60.18%

MAE - 3.54% 15.7% 24.59% 11.49%

Table 6 shows the average Recall@100 for all methods
across all datasets. The general trends are the same as in the
table of log-loss scores. The mixture and MPE methods are
very close in performance and are significantly better than
LDA across all data sets. In turn, LDA is consistently better
than the MF methods across all data sets. The recall results
show that the performance improvements of the mixture
models (predictive and MPE) are not due to the quality
of probability estimation alone, but also are evident when
performing standard ranking tasks.

To provide a visual representation of how the different
models are making predictions at the individual user level,
Figure 6 shows the top 20 categories for a randomly-selected
user from the redditS dataset. The barplots indicate the
probability mass assigned by different modeling methods,
including, from the top, the maximum likelihood compo-
nent (relative frequencies in the training data), the global
component, the predictive mixture model, the NMF 100,
NMF 200 and NMF 500 models, and the relative frequen-
cies observed in the test data. We see that the test data
frequencies (bottom) are quite different to the training data
frequencies (top). The plots also show that the NMF models
tend to systematically assign too little probability mass to
the repeated items from the training data, and tend to
predict distributions that follow the global frequency of
items rather than reflecting the specific item-consumption
patterns of the user.
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0.10 prob: 0.839 test

Fig. 6. A user from redditS (upper plot). The x-axis corresponds to
the 20 most frequent items in the training data for each user, ordered
by frequency from left to right. The different bar plots correspond to
relative frequencies in the training data on top and in the test data on
the bottom, with the probabilities assigned (to the selected items in
the test data) by different methods (see text for details). The number
displayed in each bar plot is the total (sum) probability mass (or relative
frequency) assigned by each method to the displayed top 20 training
items. For illustration purposes the y-axis has been cut-off to only show
probabilities up to 0.1 (0.01 for the global case).

5.4 Evaluating Learned Mixing Weights

For all datasets, the first column of Table 7 shows the true
percentage of new user-item entries in the test data (same
shown in Table 4). The second column (“Mixture”) contains
the average value (over all users) of the exploration rate
1 − π̄, i.e., the mixture weight for the population compo-
nent. This component represents the amount of probability
mass that the mixture model assigned in aggregate to new
items. The results show that the mixture model is much
better calibrated than MPE and NMF in that it is assigning
probability mass to new items that is relatively close to the
true fraction of new items. MPE assigns too little probability
in exploration in datasets where each user has a lot of data
points (such as redditSand lastfm) and too much in
the opposite case. NMF, even with a very large number
of components, is significantly oversmoothing, as discussed
earlier in Section 3.2.

Analyzing these values at the user level, Figure 7 shows
scatter plots between the true fraction of new items per user
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(b) redditS (sample of 2000 users)
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Fig. 7. Scatter plots of the assigned probability mass for the mixture model, versus ground truth, for the lastfm, redditS (sample of 2000 users
) and goSFloc datasets. Comparing with Figure 4, the mixture model is more accurate overall in estimating exploration propensity and more
balanced in terms of its errors.

and the mixing weight 1 − πu per user. This is a similar
plot to Figure 4 where NMF predictions were compared
to the true fraction of new items for the same datasets.
Comparing both it is clear that the mixture model provides
better calibrated results in the sense that its predictions are
more balanced between over- and under-estimation and
the root mean squared error is significantly lower for the
mixture model on all of the datasets. Similar results were
obtained for the other datasets but are omitted for brevity.

Referring back to the users whose Reddit data was
shown in Figure 1, the model assigned an exploration
weight of 14% and 17% for the blue shaded users and 1%
and 2% for the green ones; values that are indicative of their
behavior. In contrast MPE assigned an exploration weight
of 2-3% for the blue users and 1% for the green, significantly
underestimating the exploration tendency of the blue group.

The learned mixing weights represent a quantification
of user behavior in terms of the preference of an individual
to select items based on their personal history or to select
new items based on global popularity. Learning this prefer-
ence for each individual user can in principle enable more
accurate personalized services. In addition, the weights are
interpretable, allowing for the identification of specific data
points in the validation set associated with the inference of
individual weights.

5.5 Using Additional Components

Another useful aspect of the mixture model approach is
that additional components can be included to potentially
improve predictive power. Rather than relying only on a
population component to generalize a user’s model towards
global population patterns, we can also generalize towards
more specific subsets of users and items, e.g., that are similar
to a particular user u and the items that u has consumed in
the past. For example, following the social recommender
paradigm [3], [31], if a friendship graph is available, we can
use a component that predicts items for u based on items
selected by u’s social circle. As another example, for location

data, the distance between locations [18] can be informative
and a good proxy of similarity between locations.

When these types of external sources of information are
unavailable, the model can be extended by adding implicit
similarity information from the user-item consumption ma-
trix. To illustrate this we calculated an N × N similarity
matrix Srow and M × M column similarity matrix Scol,
both using cosine similarity. These matrices can be thought
of as containing neighborhood information for rows and
columns and act as a proxy to identify similar users and
categories, a technique that is common in recommender
systems based on collaborative filtering [3]. To create ad-
ditional components for each user we multiply Srow by the
training count matrix N and normalize each row, resulting
in a matrix that essentially indicates which items a user u
might choose, based proportionally on users similar to u.
Likewise we multiply N by Scol to get a matrix of counts
that are smoothed towards category similarity.

We then add the two new components and use EM to
learn the weights as before. We found that there was a
small (order of .01 to .02) but systematic improvement in
log-loss and recall across all of the data sets. While these
improvements are small, they illustrate the potential of the
method, and when higher quality extrinsic information is
available, larger gains can be expected (e.g., see [18] for an
application in location modeling).

To assess the potential sensitivity of our model to over-
fitting when more components are added, we also added
a mixture component consisting of random noise terms
and again learned mixture weights via EM on validation
data. EM consistently assigned weights in the range of
10−4 to 10−8 to these components across data sets and
the prediction performance of the model was unchanged,
providing evidence that the procedure is relatively robust
to noise and can effectively ignore pure noise components.
In general of course, as more components are added and
with limited validation data there is the potential for any
model to overfit in terms of estimating the weights, and for
generalization performance to be affected negatively.
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Fig. 8. Time in seconds for training the predictive mixture model as a
function of the number of processors, across all data sets, on a log-log
scale. Our proposed approach improves roughly linearly as a function of
the number of processors added.

5.6 Scalability
The complexity of our method for calculating the compo-
nents is O(s ∗N ∗M) where 0 ≤ s ≤ 1 is the density of the
matrix; and O(e ∗ |Vu| ∗N) for learning the mixing weights,
where e is the number of iterations for EM, and |Vu| is the
number of validation data points for a user. In practice e
tends to be less than 10 in most cases (since the component
parameters are fixed). Combined with the fact that the count
matrices are often very sparse (so s is very small) this means
that learning the predictive mixture model can be done very
efficiently.

In addition the training of the mixture model is easy to
parallelize: EM can be run in parallel for each user, and the
additions required for calculating the components can be
carried out in parallel as well. Figure 8 shows the amount
of time in seconds taken for training a predictive mixture
model for each of the datasets when using [1, 2, 4, 8, 16, 32]
processes. Using parallelization on 32 processors, we were
able to run the model in times ranging from 2 to 1000
seconds depending on the data set, where each doubling
of processor numbers resulted in close to halving the run-
time. In contrast, NMF optimization has a complexity of
O(k ∗ N ∗ M) [27], [28]. Using the standard scikit-learn
implementation used in this paper it took more than 3
hours on a 16-core machine to train an NMF model on
the redditT dataset for k = 500.7 It should be noted that
our method could be extended to handle data in an online
streaming fashion in a straightfoward manner given that
the updates for each user can happen independently on
different machines.

6 RELATED WORK

We separate related work into three broad categories: (1)
models that focus on discovering new items, (2) those that
focus on reconsumption of old items, and (3) models that
predict a mix of new and repeat consumption. Our work
belongs in the last category as it focuses on balancing

7. Our parallelizable implementation can be found here: https://
github.com/UCIDataLab/repeat-consumption

the two primary driving forces of human behavior in this
context—discovery and reconsumption [10], [21].

The first category includes latent factor models based on
matrix factorization techniques, which are widely used in
research on recommender systems. In such applications, the
model is primarily tasked with learning user preferences
from historical observations and predicting future user-item
interactions with a focus on the discovery of new items [3],
[7], [14]. Due to the nature of this task, the observations
are often treated as implicit feedback and it is typical for the
evaluation to focus on a binary outcome; which new items
a user will consume [3]. Zhao and Lee [13], for example,
propose a method to model the curiosity of each user as a
distribution over the novelty of items they have consumed.
They develop a Probabilistic Curiosity Model as well as
a method to measure the novelty of each item. Based on
these two components, they make item recommendations
that satisfy the optimal amount of curiosity for each user.
In contrast we learn an implicit user exploration prefer-
ence through a validation set, allowing the learning of
exploration preferences directly from the consumption data,
without external item information.

The second category of related work focuses on repeat
consumption data, the importance of which has also been
analyzed in literature [21], [22], [32], [33]. For example, in
[32] the authors explore how many search engines queries
are repeated and advocate for the value of recognizing them
for a better user experience. In [21] the authors analyze a
setup that is similar to ours, in which users make selections
from a limited set of items and tend to heavily repeat their
choices. They also examine statistics for multiple datasets
with this property and explore the effects of popularity,
satiation, and recency of previously selected items for pre-
diction. They conclude that these are important features
for modeling repeat consumption, but do not focus on
modeling or predicting new item selections.

A third category of related work consists of literature
that uses the sequence of events, focusing on prediction of
the next event. Benson et. al., [22] examine time intervals
between consumptions to predict whether a consumption
will be novel or not, and builds models for both. Kapoor
et. al., [4] argue that users are characterized by a novelty
seeking propensity, which is both user and time-dependent
and propose a metric to measure it. They build a pre-
diction model for this propensity based on diversity in
recent consumption. Within the literature for sequential data
prediction, a different strand of work attempts to predict
the time of consumption as well as the item. For instance
authors in [34] model events as a point process, while in [35]
the process is augmented with a recurrent neural network.

Sequence prediction has a different focus than the ap-
proach we propose here. We do not attempt to model time
or assume that data is available in the form of sequences of
events, but rather an aggregation of events is available in the
form of a user-item matrix.Sequential data can sometimes be
unavailable and sequential models can incur a large cost in
space and time complexity (depending on the approach).
Furthermore personalization can be difficult, since many
approaches require a relatively large amount of data for
each user. This often limits the work above to experiments
involving a few power users [4], [22], or not be personalized
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at all [34]. In contrast our method is scalable, personalized,
and can be used for users with little or no data.

Finally, the mixture approach pursued here is similar to
a model that was originally proposed in [18]. In that work
only global population-based weights were used in the
mixture model and the analysis was limited to the context of
spatial data. In this paper, as well as investigating individual
weights and broader classes of datasets, we provide a signif-
icantly more in-depth analysis of explore/exploit behavior
in the context of user-item consumption.

7 DISCUSSION

In this paper we investigated the broad characteristics of
user-item consumption for problems where there is both
repeat and novel item consumption. We found that com-
monly used traditional matrix factorization methods have
limitations in terms of being able to accurately reconstruct
individual details, leading to a lack of predictive accuracy at
the individual user level. In contrast, we propose a method
based on mixture models, which is a simple, robust, and
scalable approach for user modeling in this context. We use
the EM algorithm to learn personalized mixing weights,
without assuming a static distribution over user prefer-
ences, allowing the model to account for the propensity of
some users to continuously explore. Experimental results
on seven real-world data sets provide validation of the
benefits of mixture approaches over matrix factorization in
this general context.

One potential pitfall of our method is that it depends
on a good validation set to learn the explore/exploit prefer-
ences of a user. This is prone to overfitting if the validation
set is not representative, although the use of an empirical
Bayes prior can mitigate this effect.

Future directions include leveraging temporal informa-
tion in a scalable manner for additional improvements in
predictive accuracy. Given that recent consumption is often
indicative of the future behavior of a user [21], an obvious
extension of the approach proposed in this paper would
be to decay counts over time (e.g., exponentially), in effect
upweighting the more recent user-item events. Another po-
tentially useful direction would be to address the cold start
problem, for both new users and new items, for example by
developing an online version of the mixture approach.

APPENDIX
EM EQUATIONS

For learning of individual weights the EM algorithm can
be applied to each user u’s data independently. In the case
where there are only two components, the mixing weights
for a user u can be denoted as πu and (1 − πu). Let DV

represent the validation data for the user and nuj be the
number of times user u selected item j in the validation set,
the likelihood of the validation data for the mixture model
is:

p(DV |θ,π) =

M∏
j=1

p(j|θ,π)nuj (7)

=

M∏
j=1

(
πup

I(j|θI) + (1− πu)pP (j|θP )
)nuj

For the E-step of the EM algorithm, we calculate the proba-
bility (or responsibility) that a single event (one selection of
item j) was generated by the individual component pI as

zj =
πup

I
(
j|θI

)
πupI

(
j|θI

)
+ (1− πu)pP

(
j|θP

) (8)

The M-step updates the mixing weights after summing the
responsibilities for all points and normalizing the total com-
ponent responsibility to sum to one. If βI is the parameter of
the Dirichlet prior for the component, the M-step becomes:

π(t+1)
u =

M∑
j=1

nujzj + βI − 1

M∑
j=1

nuj + βI + βP − 2

(9)

Learning global mixing weights does not change the E and
M steps, but the data for all users is used in the updates
rather than per user.
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